
Generic Programming Methods for the Real Time
Implementation of a MRF Based Motion Detection Algorithm

on a multi-processor DSP with multidimensional DMA

Frantz LOHIER
1,2, Lionel LACASSAGNE

1,2, Pr. Patrick GARDA
2

1Electronique, Informatique, Applications (EIA)
Burospace, Bat. 4, Route de Gisy, 91571 Bièvres Cedex, France

2Laboratoire des Instruments et Systèmes (LIS)

Université Pierre et Marie Curie (UPMC), 4 place Jussieu – B.C. 252, 72252 Paris Cedex 05, France

frantz@lohier.com , lionel@lis.jussieu.fr , garda@lis.jussieu.fr

Résumé – Cette communication adresse une double problématique. D’abord, nous soulignons le besoin de méthodes de programmation
génériques pour l’implémentation temps réel (TR) d’algorithmes de traitement d’image bas niveau complexes sur des architectures DSPs
parallèles à base de multiprocesseurs exploitant le parallélisme au niveau instructions et de DMAs multidimensionnels. Ensuite, nous
introduisons le besoin d’une implémentation TR d’un algorithme de détection de mouvement sur des architectures compatibles avec des
systèmes bas coût embarqués. Pour répondre à ces besoins, nous montrons comment une méthodologie de gestion des flots synchrones
reposant sur le DMA et qui se veut dynamique et générique sur le plan des configurations de traitement (suivant la nature des chaînes de
traitement, la taille des images et du nombre de processeurs impliqués) peut être utilisée pour l’implémentation d’une méthode
Markovienne de détection de mouvement sur l’architecture parallèle avancée du TMS320C80. Cette étude de cas montre l’adéquation de
notre méthode et introduit un facteur d’accélération de 4 par rapport aux durées de traitement précédemment publiées de l’algorithme ciblé.
Plus encore, on estime que le traitement TR est possible sur des images 2562 avec un système C80 optimal.

Abstract – This paper addresses 2 problems. First, we emphasize the need for generic programming methods for the real time (RT)
implementation of complex low level image processing algorithms on parallel DSPs featuring multi-processing and ILP (Instruction Level
Parallelism) and multidimensional DMA. Second, we show the need for a RT implementation of a motion detection algorithm on hardware
platforms suitable for low cost embedded systems.  To tackle these issues, we show how a DMA based SDF (Synchronous Data Flow)
methodology that is dynamic and generic in terms of processing configurations (according to the processing chains, image sizes and number
of processors involved) can be used to implement a MRF (Markov Random Field) based motion detection algorithm on an advanced parallel
DSP architecture: the TMS320C80. This case study shows the adequacy of our approach and demonstrate a speed factor of 4 compared to
previously published implementations for the targeted algorithm. Furthermore, we estimate that RT performance can be achieved for 2562

images on an optimal C80-based system.

1. Introduction

1.1 A novel approach to optimize 2D I/O
streams

While analyzing the recent architectural evolutions, it
appears that on the one hand :

− RISC and DSP cores are converging towards combined
VLIW/SIMD architectures ;

− DMA co-processors now stand as the only major
architectural difference between the RISC and DSP
world. They offer more predictability at the cost of a
more difficult programming stage (they feature self-
modifying parameters and multi-dimensions support as
in [4]).

Current programming methodological trends, on the other
hand, are still limited :

− DSP development tools are lacking whereas
implementation is raising in complexity
(SIMD/software pipelining, C8x’s VLIW operations,
advanced DMAs) ;

− DSP flexible simulation/implementation platform (such
as MatLab, Ptolemy or Hyperception) are not suited for
2D processing. For these applications, the 1D
synchronous-data-flow (SDF) representation domain
seems the most mature ;

− The code generated from these platforms isn’t optimal
and adding new processing kernels is often lacking a
flexible re-usable framework.

To tackle these issues, we recently introduced a SDF
oriented programming methodology [2][3]. It seeks the
enhancement of data locality by chaining the execution of
processing operators (i.e nodes) hence minimising the global



AbsDif f

Input(t+1) Input(t)

|O(t+1)|

∑x ∑x2
Bin

(Thres. ) E(t+1)

z -1

z-1

z-1σ2(t+1)

step1 (4PPs: 6ms)

|O(t)|

E(t)

I
C
M
(Num.
Iter.)

E(t)

E(t-1)

σ2(t)

z-1

step2 (4PPs, 4 passes: 74ms)

z-1

8 bits
binrarised

result

8 bits data stream
1 bit data stream

Single in/out value

z-1 Buffering (delay)

amount of parallel DMA transfers. This approach grounds
on “templates” which set up a generic framework to expand
node’s libraries and compose complex processing chains
dynamically. Templates derive from the structuring element
required/produced by algorithmic operators in the sense that
they also gather node’s implementation constraints. These
additional multiplicity constraints relate to optimisations
techniques such as the use of SIMD operation, loop
unrolling or software pipelining [1][3]. These techniques
maximise the usage of processor’s resources through the
execution of several algorithmic loop iterations in parallel.
In a multi-processor context, the ultimate goal of our
approach is to set up all the synchronous DMA requests
from a generic chain’s description, enhancing data locality
while maintaining instruction caching low.

Based on this methodology we have implemented a
complete low-level image processing library (more than 60
nodes) on the C80. This library features dynamic parsing of
chains’ description (nodes’ template, image sizes, data
cache sizes, number of processors), automatic DMA requests
generation and synchronisation with processing. The design
space isn’t automatically explored towards an optimal use of
heterogeneous computational resources and communication
channels as with the Syndex’ generic approach. Instead,
partitioning on homogenous resource is user-guided but re-
configurable at run-time and since it relies on optimized 2D
I/O streams (in terms of data locality enhancement combined
with advanced optimizing implementation techniques), it
improves the parallelization efficiency.

1.2 The motion detection algorithm

To illustrate the use of our library, we describe the
implementation of the robust Markov Random Fields (MRF)
based motion detection algorithm proposed in [6]. Starting
from an image difference, the ICM (Iterated Conditional
Mode algorithm) is used to compute the resulting binary
“label” picture in an iterative manner. It acts as a low-pass
motion filter to locally minimize a spatio-temporal energy
model. Iterations are performed at pixel level (“site
recursive”) and the suggested number of iterations is 4.
Although this algorithm is sub-optimal, it nowadays involves
a challenging computational load when seeking real-time
(RT) processing on large images. Also, for this algorithm,
the RT performance stand as an important criterion towards
a good detection efficiency (especially when fast motion
constitute the sequence).

A complete description of the approach is detailed in [2].
As a synopsis of it, a pre-possessing phase merges the
absolute difference of 2 images, the variance of it and the
binary thresholding of the absolute data (the initial labels
Et+1). This phase is followed by the ICM regularizing
algorithm as shown in figure 1.

FIG. 1 : Synopsis of the MRF algorithm

2. The architectural mapping

The C8x has 1 general purpose RISC processor (MP) and
4 advanced SIMD/VLIW DSPs (or PPs for Parallel
Processors) [4]. This suites the processor-farm model where
the MP synchronizes the PPs representing the bulk
processing power. The pre-processing and the ICM passes
require just 2 image scans. For each scan, we use an SPMD
partitioning scheme. The image is split among the 4 PPs and
since each sub-region doesn’t fit in the PP’s general purpose
internal data memory, the data are brought using multiple
DMA requests while double buffering.

2.1 Implementing the pre-processing phase

The pre-processing stage is done in a single pass thanks to
a chain connecting several nodes through their
corresponding templates. Templates' geometry are mostly

described by 4 parameters. wt×ht corresponds to the
minimum amount of data that must be present in internal
memory.

This quantity often exceeds the surface of the operators'
structuring element because we integrate size requirements
that raise while implementing generic optimization
techniques towards the efficient algorithmical mapping onto
hardware resources. Here, the goal is to lower the
development burden and the granularity of each node by
assuming we have a minimum amount of data that matches
the number of parallel iterations processed in 1 cycle of the



(1)
AbsDi f f

Input( t+1)

Input(t)

(2)
∑x

(3)
∑x2

(4)
B in

(Thres. )

1 6×1,8,1

2×1,1,1

6×1,2,1

1 6×1,8,1
|O(t+1) |
(8 bi ts
data)

1 6×1,8,1

E( t+1)
(1 bi t
data)

2,1,2,1
1 6×2,8,1

Internal processing
chain

Internal  (output)
template geometry

Process ing  node

External  buf fer

Template parameters:
w t × × × × h t, w s, h s

stepmin. size

Internal ( input)
template geometry

w t

Template
geometry

h t

w s

h s

FIG. 2 : The pre-processing chain

 nodes' loop kernel. Following the same goals, we also
impose multiplicity constraints on the number of additional
data that can be present in internal memory for the
horizontal and vertical direction and described thanks to
parameters ws and hs respectively. These templates allow the
composing of complex processing chains which, together
with the reduced granularity of nodes, allows to enhance
data locality and reduce parallel DMA transfer and
instruction caching towards improved real-time
performance. Each node has synchronized input and output
templates whose parameters are detailed on figure 2.

Next and since the processed images do not fit in internal
memory, we need to estimate the number of all input and
output parallel DMA requests between each synchronized
execution of the chain based on the exact surface of data we
can process. This calculus is based on the overall size
constraints that are propagated along each path of the chain

that connects to an external buffer. Propagation is based on
template parameters and the solving of simple and
independent diophantine equations (for the vert. and horz.
direction). These equations appear as we try to synchronize
the amount of data produced by a node with the number of
data consumed by the next node in the chain. This
synchronization mechanism, which involve nodes’
templates,  is depicted with figure 3. Recursively, the gained
synchronization constants (which appear has 2 congruences:
βο≡φ(Φ) et γο≡ τ( Γ)) are propagated between the output and
input of each node until the leading node of each path is
reached. This procedure enables the merging of the called
"virtual-template" which features new parameters gathering
all the size constraints (wt'×ht',ws',hs'). Then, according to the
original image size, we estimate the combined number of
horizontal (β) and vertical (γ) virtual templates we can cache
in an internal memory space of S-wt'xht' bytes. A complete
description of this procedure can be found in [2].

As a synopsis of our approach, table 1 shows
(β,γ ) couples we gain while applying this procedure on the
first step of the motion detection algorithm with W=H=256
and S=2048 for all the input and output buffers. Min(β) and
Min(γ) are then used to synchronize all the nodes as well as
to partition data among all the processors (in a SPMD
fashion). The subsequent transparent and dynamic
programming of DMA requests allows to synchronize all
input and output transfers (for all the processors) towards
software managed data caches.

TAB. 1 : Generating & synchronizing DMA requests
Paths Virtual template

(w’ t, w’s,h’t,h’s)

β γ

I�AbsDiff�BinThres 16,8,2,1 30 7

I�AbsDiff�∑∑∑∑x 16,8,1,1 30 8

I�AbsDiff�∑∑∑∑x2 16,8,1,1 30 8

O�BinThres�AbsDiff 2,1,2,1 254 7

Multidimensional support allows the DMA to address any
region of interest and its arithmetic capabilities permits to
implement the double buffering scheme with minimum
processors’ involvement. This greatly favors instruction
cache coherency and hence, performance.

Abs
Diff

Bin
ThresI(t)/(t+)1







×+=×+
×+=×+
IO

IO

γγ
ββ

1211

816816





)1,2(

)8,16(







×+=×+

×+=×+
II

s
I
t

OO
s

O
t

II
s

I
t

OO
s

O
t

hhhh

wwww

γγ
ββ

Synchronisat ion constra ints

βΙ/Ο, γΙ/Ο: number of horizontal/vertical template that fit in the
internal caching buffer of size S-w' t × h' t

)1(0)( ≡Φ≡ φβ O

)1(1)( ≡Γ≡ τγ O







Γ⋅⋅+=′′
Φ⋅⋅+=′′

),(),(

),(),(
I
t

I
t

I
tst

I
t

I
t

I
tst

hhhhh

wwwww

τ
φ

FIG 3. Getting the virtual template



Thanks to this methodology and the use of generic
optimization techniques (software pipelining, SIMD
operations) to implement the nodes in assembly language,
the pre-processing phase achieves 6 ms for a 2562 image
with 4 PPs working in parallel on a 40 Mhz device.

2.2 Implementing the ICM node

Thanks to the dynamic infrastructure of our C80 library
implementing the generic DMA caching methodology, the
system is reconfigured at runtime to run the ICM. This step
is implemented as a single-node chain. The same I/O
generating/optimizing algorithm is used but not detailed
here. Instead, the various involved templates are shown in
Figure 4.

FIG. 4 : the ICM single-node chain

To lower the number of DMA requests required, some
external buffer’s data are organized sequentially and defines
the ICM node as diadic. Also, there is no synchronization
regarding the processed data that are shared between 2
processors. This simplification has very little impact on the
motion detection efficiency and permits SPMD partitioning
with maximum performance.

The ICM node is written in VLIW algebraic assembly
language. We took advantage of the new code compactor
(ppca) detailed in [5] to automatically gather assembly
operations into 64 bits VLIW instructions. Register
allocation was also done by ppca that efficiently compacted
313 operations into 199 VLIW instructions. Since the core of
the node requires more register resources than available
(each PP features 8 data registers and 2 sets of 5 address and
3 index registers), we manually inserted register spilling
operations based on ppca feedback logs. We introduced the
use of 3 LUTs (initialised by the MP) to fasten calculation
whereas the site recursive version of the ICM algorithm
prevented us from using the SIMD capabilities of the ALU
(but this version of the ICM demonstrates faster converging).

The core of the kernel requires 40 VLIW instructions per
pixel which is 4 times faster than what PP’s optimising
compiler produces on a C version of the same algorithm. On
256×256 images, at 40 Mhz, we measured 74 ms for the 4
ICM passes which is very close to the optimistic optimum:
256×256×40×4(num. pass)/(40Mhz×4(num. PP))= 65 ms.

3. Conclusions

This paper introduces two important results. Qualitatively,
we demonstrate that our methodology is generic enough to
cope with a complex low-level image algorithm. It is also
flexible enough to be dynamic and independent of the image
size and number of processors. Most importantly, with
respect to generic optimisation techniques, it optimises 2D
I/O streams and allows good speed-up towards RT
performance.

Quantitatively and thanks to the framework of our general
c80 image processing library, we gain a speed factor of 4
with respect to previously published processing duration for
the same algorithm [6]. When considering the 60 Mhz
version of the device, we can increase the processing rate up
to 18 images per second for 2562 images. The use of more
efficient memory, like synchronous dynamic RAM (we used
DRAM), would further increase the rate.

Pre-prop. &  ICM LIS-UPMC/EIA LIS-INPG

128x128 - DSP 96002: 15 images/s

Cnaps 256 PEs: 10 images/s

256x256 40 Mhz C80: 12 images/s -

Références
[1] F. Lohier, L. Lacassagne, Pr. P. Garda, Programming
Technique for Real Time Software Implementation of
Optimal Edge Detectors. Proc. of DSPWORLD’98
[2] F. Lohier, L. Lacassagne, Pr. P. Garda, A Generic
Methodology for the Software Managing of Caches in
Multi-Processors DSP Architectures. Int. Conference on
Acoustics, Speech and Signal Processing. ICASSP’99.
[3] Articles [1] and [2] are available online at
www.lohier.com
[4] TMS320C8X System-Level Synopsis, Texas Instruments
SPRU113b.
[5] Jihong Kim, Graham Short, Performance Evaluation of
Register Allocator for the Advanced DSP of TMS320C80.
Proc. of ICASSP’98
[6] A. Caplier, F. Luthon, C. Dumontier, Real time
Implementations of an MRF-based Motion Detection
Algorithm. Journal of Real Time Imaging 1997.

E(t)
8 bi ts

binrar ised
resul t

E(t+1)

4 iter.
ICM

|O(t)| E(t)E(t-1)

Single input DMA request

32×3,32,1

4×3,4,14×3,4,1

4×1,4,1

Single output DMA request

32×1,32,1 4×1,4,1


