
Distanceless Label Propagation: an Efficient Direct Connected Component Labeling Algorithm for GPUs
Laurent Cabaret, Lionel Lacassagne, Daniel Etiemble, MICS CentraleSupélec, LIP6 UPMC, LRI Univ. Paris-Sud

Context

Most Connected Component Labeling (CCL) algorithms are sequential, direct and
optimized for CPU. Very few were designed specifically for GPU architecture. The
most efficient GPU implementations are iterative in order to manage synchronizations
between processing units but the number of iterations depends on the image shape
and density. DLP-GPU is a GPU dedicated direct algorithm.

Iterative vs Direct Algorithms

Direct (CPU)

0 0
0 0 0 0 0

0 0 0

0
0
0

0
0
0

0 0 0

0 0
0 0

0 0 0 0 0
0 0 0

0
0
0

0
0
0

0 0 0

0 0
0 000 0 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

1 1 1 1 1
1 1

1111
1

11 1 1
1
11111

1

3 2 2
2

2

6
4 5

5
4444

4

0 0
0 0 0 0 0

0 0 0

0
0
0

0
0
0

0 0 0

0 0
0 0

0 0 0 0 0
0 0 0

0
0
0

0
0
0

0 0 0

0 0
0 000 0 0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0
0 0
0 0
0 0

1 1 1 1 1
1 1

1111
1

11 1 1
1
11111

1

2 2 2
2

2

4
4 4

4
44444

4

1 01 1 1 1
1 1

1111
1

11 1 1
1
11111

1

1 1 1
1

1

1
1 1

1
11111

1

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

image of pixels image of labels

current
pixel

p1 p2 p3
p4 px

predecessor
pixels

e1 e2 e3
e4 ex

predecessor
labels

current
label

0 51 2 3 4 6
0 41 2 2 4 4

1 2 4

3 5 6Equivalence table

Classical direct algorithms process the
input image pixel by pixel with a neigh-
borhood mask and an equivalence table
that holds a graph structure (oriented
forest) to represent the label connections.
This linear scanning is not suitable for
GPU implementation.

Iterative
1 01 1 1 1
1 1

1111
1

11 1 1
1
11111

1

1 1 1
1

1

1
1 1

1
11111

1

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

0

6 6 6
6

6

22
22 22

22222222

22
22
22

0 0 0 0
0 0 0 0 0 0 0

0 0 0
0 00 0

0 0 00
0 0

0
0

0 0 0
0 00 0

0

1
1
1

1
0
1111

1
11

10 0
1
0 1

1
1

11

1 1 1 1 1

1 02 3 4 5
7 8

13121110
17

1918 20 21
25
3332313029

24

14 15 16
9

6

27
22 23

28
3837363534

26

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

1 01 2 3 4
1 4

8877
11

1718 17 20
20
2525302424

18

14 9 9
6

6

27
22 23

23
2827272626

22

0 0 0 0
0 0 0 0 0 0 0 0

0 0 0
0 00 00 0

0 0 0 00
0 0

0
0

0 0 0
0 00 0

0

until
stabilisation

+min = 28

Iterative algorithms propagate localy
(mask’s horizon) the connection be-
tween pixels and iterate until stabiliza-
tion. While this process helps from
the synchronization point of view,
it introduces a strong dependency
to the image shape and density
increasing the whole labeling time.

Iterative propagation, shape dependancy, geodesic distance

While a full square can be labeled in 5 iterations a square with a hole needs 8 iterations.
2 3 4 5

6 7 8 10
12 13 14 15

16
11

9

17 18 19 20
21 22 23 24 25

2 3 4
2 4

6 7 8 9
11
6

3

11 12 13 14
16 16 17 18 19

32
2

32
6

3

6 6 7 8
11 11 11 12 13

2

2
2

2
6 6 6 6 7

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1 1
1 1 1
1 1 1

1 1
1 1

1

1
0 0 0
0 0 0
0 0 0

1 1 1 1
1

1 1 1 1 1

1
1
1

1
1

2

0 0 0
0 0 0
0 0 0

1 1 1 1 1

1

1
1
1

1 1 1

1
1
1

2 3 4 5
6 7
8
10
12 13 14 15 16

11
9

0 0 0
0 0 0
0 0 0

1 2 3
3

6 7
8 9

4

98 10

0 0 0
0 0 0
0 0 0

1 11
1
1

2 3 4

6 7
8
10 11

9

4

1110 13

0 0 0
0 0 0
0 0 0

1 1
1 …

In one iteration, the propagation distance of a label is limited to 1 by the mask radius.
The number of iterations is (gd +1) with gd the geodesic distance. gd is data-dependant
and reflect the image complexity. For the spiral (one of the worst cases) the number of
iterations dramaticaly increases with the spiral size.

0 1 2 3 4
4

7
8
9 9 10 11 12

6 558

0 1 2 3 4
4

79
6
5

7810
10
11 11 12

1 2 3 4
2 2 3

3 3 4
4
3

4

4 4 4

0 1 2 3 4
1
2

4
3

0 1 2 3 4
1 4
2
3
4 4 5 6 7

6
5

Spiral width Iterations
5 13

100 5001
2048 2.1 × 106

DLP: beyond the mask’s horizon

DLP-I: labels initialization → embed the graph
By initializing the label image with a value refering to each pixel position, a label points
to its original location.
1D:

1 11 1 110 1
0 654321 7

1 32 5 760 8
0 654321 7

1 11 5 550 5
0 654321 7

2D:
1 1 1 1 1
0 0 0 0 1
1 1 1 0 1
1 0 0 0 1
1 1 1 1 1

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

1 2 3 4 5
10
15
20
2524232221

16
11 12 13

1 1 2 3 4
4
10
15
2020221616

11
11 11 12

5
1 432

1510 20

25

24

11
12

16

13

22

21

23

The graph reveals hidden connections between labels

DLP-R: Relabeling
By setting each pixel site to the value of
its corresponding root, the relabeling of
the image and the transitive closure of the
graph are performed simultaneously

1 1 2 3 4
4
10
15
2020221616

11
11 11 12

1 1 1 1 1
1
1
1
11111111

11
11 11 11

DLP-SetRoot: adding Union-Find
DLP-SetRoot analyse the label values in the
neighborhood to find the minimum (ε) and
then assigns it to all the neighbor roots (ek).

1 1 1 1 1
1
1
1
11111111

11
1 11 11

1 1 1 1 1
1
1
1
11111

1
1 1 1

The spiral (regardless its size) can be solved using once the sequence: {DLP-I, DLP-
SetRoot, DLP-R, DLP-SetRoot, DLP-R}. This sequence has to be compared to the
2.1 × 106 iterations required by classical iterative algorithms.

DLP-RUF: Recursive Union-Find
On GPU, several threads can modify the graph
concurrently. DLP-RUF addresses the concur-
rency issue with a recursive call to atomicRUF
(based on atomicMin). Although DLP-RUF can
label the whole image in one pass, its efficiency
is increased after an optional {DLP-SetRoot,
DLP-R sequence}.

Algorithm 1: atomicRUF(E, ek, ε)
1 if ek > ε then
2 minResult = atomicMin(&E[ek −1], ε)
3 if ε > minResult then

. minResult < ε < ek
4 atomicRUF(E, ε, minResult)
5 else
6 if ek >minResult then

. ε < minResult < ek
7 atomicRUF(E, minResult, ε)

DLP-GPU: fitted to GPU architecture

The image is sliced into tiles to take advantage of the shared memory. Each tile is
locally labelled using DLP mechanisms with a 2×2 propagation mask. Local labels are
translated to global labels before applying the one pass border merging (east and south)
with DLP-RUF. Then a final global relabeling with DLP-R is applied.

1 7

1 10 10 11 7
8 10 11 14
15 15 17 19 21 21

1 7

1 10 10 11 7
8 10 11 14
15 15 17 19 21 21

1 7

1 10 10 11 7
8 10 11 14
15 15 17 19 21 21

1 7

1 10 10 11 7
8 10 11 14
15 15 17 19 21 21

1 1

1 1 1 1 1
1 1 1 1
1 1 1 1 1 1

8 8

8 8 8 8 8
8 8 8 8
8 8 8 8 8 8

57 57

57 57 57 57 57
57 57 57 57
57 57 57 57 57 57

63 63

63 63 63 63 63
63 63 63 63
63 63 63 63 63 63

DLP-GPU structure

Step 1: tile local labeling [in shared memory]
 DLP-I(tile)
 DLP-SetRoot(tile) [optional]
 DLP-R(tile) [optional]
 DLP-RUF(tile)
 DLP-R(tile)
 Label translation

Step 3: whole image relabeling [in global memory]

Step 2: border merging [in global memory]

Reproducible benchmarks

Random-based but reproducible benchmarks (Mersene
Twister + fixed seed) allow fine analysis and fair com-
parisons between algorithms.
The image’s parameters are: the density d (between 0 and 100%) the granularity g
(between 1 and 16) and the image’s size.

Results - fixed (2048×2048) and variable size
With only 256 cores vs 2816 (9.1%), the Jetson TX2 achieve 11.2% of the GTX980ti
performance. For both cards, when g increases, the curves come closer to a straight
line. The border processing (step 2) is very cycle consuming : quite the same time than
relabeling (step 3) while it only processes borders (noncoalescent accesses to the east
borders pixels and to the equivalence table within the image).

0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 20 40 60 80 100
Density(%)

t(
m

s)
 -

 g
=
1

0
0.2
0.4
0.6
0.8
1.0

t(
m

s)
 -

 g
=
16

0 20 40 60 80 100
Density(%)

0 20 40 60 80
Density (%)

0
2
4
6
8

10
12

100 0 20 40 60 80 100
Density (%)

0
2
4
6
8

10

t(
m

s)
 -

 g
=
1

t(
m

s)
 -

 g
=
16

25
6

10
24

20
48

30
72

40
96

61
44

81
92

image base

0
1
2
3
4
5
6
7

T
p

(G
p/

s)
 -

 d
=
34

%

Tile labeling Tile merging Relabeling Tile labeling Tile merging Relabeling

g=1 g=4 g=16

GTX 980ti - Maxwell 2816 - Tile (8,84) Jetson TX2 - Pascal 256 cores - Tile (8,24)

image base
10

2451
2

25
6

12
8

20
48

g=1 g=4 g=16

T
p

(G
p/

s)
 -

 d
=
34

%

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

The throughput performance increases with g and the peak performance is
quickly reached. The image size for which half of the peak perfor-
mance (N1/2 metric) is reached is respectively 640 × 640 and 176 × 176.
DLP-GPU quickly reaches the peak performance of the GPU.

Conclusion

DLP is a new direct CCL algorithm for GPU. Thanks to a recursive union-find with
atomic instructions, DLP is no more iterative but direct like the algorithms for multi-
core processors. The equivalence table is embedded within the image in order to
reduce the number of memory accesses and also to simplify and combine transitive
closure and relabeling operations. The optionnal pre-processing step can speeds up
DLP-GPU from ×1.5 for low density images up to ×2.5 for high density images.

