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Introduction Connected Component Analysis Results Conclusion

Voting algorithms

A voting algorithm, for each piece of data, updates a counter which depends on the piece of
data being processed

Histogram, Hough transform, Connected Component Analysis

Parallel voting algorithms require concurrent counter updates
atomic Read-Modify-Write instructions
if multiple accesses are on the same counter, they are serialized

Common techniques to accelerate voting algorithms:
privatization: threads have local counters they can update without serialization→ only for low
number of counters

caching: threads can keep a recently accessed counter in a software cache in case it is accessed soon. The global
counter is updated only when the cached counter is evicted, but has a high overhead
partial Access: all threads process the whole data, but update only a part of the counters → low parallel efficiency if data
is large
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What are Connected Component Labeling and Analysis ?

Connected Components Labeling (CCL) consists in assigning a unique number (label) to each
connected component of a binary image to cluster pixels

Connected Components Analysis (CCA) consists in computing some features associated to each
connected component like the bounding box [xmin,xmax] x [ymin,ymax], the sum of pixels S, the
sums of x and y coordinates Sx, Sy

gray level image binary level image
(segmentation by 
(motion detection)

connected component
labeling

1 2

connected component
analysis

seems easy for a human being who has a global view of the image

ill-posed problem: the computer has only a local view around a pixel (neighborhood)
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Direct Connected Component Labeling

Direct algorithms are based on Union-Find structure (represent equivalences by a forest of trees stored in
the table T):

find(e, T) search for the root of e

union(e1, e2, T) join the trees containing e1 and e2

flatten(T) flatten all the trees in T (all vertices point to their root)

Rosenfeld algorithm [1] is the first 2-pass algorithm with an equivalence table:

First pass: scan the image (raster order) to create temporary labels and build the equivalence table

Transitive closure: flatten T

Second pass: relabel the image (replace temporary labels with their root)

Parallel merge in union-find can lead to concurrency issues.

Bottom-right case: 4 has to take the value 1 and 2
simultaneously: conflict!

lock-free union by Komura [2] and improved by Playne
and Hawick [3]
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Connected Component Analysis

Compute features for each connected component
Surface (number of pixels): S
Bounding box: [xmin, xmax]× [ymin, ymax]
Centroid: (xG, yG) = (Sx, Sy)/S

Features are stored per label in separate arrays (Struct of Arrays)
Temporary labels make “holes” within feature tables

→
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For the following explanations and examples, only S is shown.
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Naive Feature Computation

Post-processing of regular CCL
Each pixel vote in an array S at the index given by its label

Algorithm 1: Naive Feature Computation
1 for y = 0 : h− 1 do ▷ parallel
2 for x = 0 : w− 1 do ▷ parallel
3 if I[y · width+ x] ̸= 0 then
4 e← E[y · width+ x]
5 atomicAdd(&S[e], 1)

serialization of atomic accesses on same label are as
slow as sequential for the full image (all ones):
atomics do not scale
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State-of-the-Art Feature Computation
on 8192×8192 random images on an
A100

We propose and explore three ways to reduce serialization of votes for CCA:
Run-Length Encoding (full segments, RLE)
Conflict detection
On-the-fly Feature Computation
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Full runs: FLSL (Faster LSL)

Based on the CPU algorithm with the same name [4] and expands the use of runs from HA [5].
labels and features are shared with all pixels of a run: one single vote per run
full runs allow even more update reduction compared to HA
does not lose parallelism with long runs

performs a per-line RLE compression

“compress-store”

1 1 1 1 1 1I[x]
0 1 2 3 4 5 6 7 8 9x

I[x]⊕I[x-1] 1 1 1 1 1 1

0 3 4 6 8 9

0 3 4 6 8 9

(I[x]⊕I[x-1])⋅x

RLC

1 1 1 1 1 1I[x-1]

Example of a segment and its associated run-length encoding
with a semi-open interval [0, 3[4, 6[8, 9[ with a 4-wide warp
compress.

Algorithm 2: Kernel for FLSL segment detection

1 n← 0 ▷ Number of runs on the line y
2 mp ← 0 ▷ Previous pixel mask

▷ Detect runs
3 for x← laneid() to width by warp_size do
4 p← I[y · width+ x]
5 mc ← __ballot_sync(ALL, p)

▷ Detect edges
6 me ← mc ^ __funnelshift_l(mp,mc, 1)
7 mp ← mc

▷ Count edges before current index
8 er← n+ __popc(me & lanemask_le())
9 ER[y · width+ x]← er

▷ “Compress store”
10 if me & ml then RLC[y · width+ er− 1]← x
11 n← n+ count_edges(me) ▷ same n for the whole warp

12 if n is odd then
13 if tx = 0 then RLC[y · width+ n]← w
14 n← n+ 1

15 if tx = 0 then N[y]← n
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Conflict Detection

When threads vote to update features, we can detect which threads of a warp access the same label
thanks to __match_any_sync
Perform an in-register reduction for all threads updating the same label

tree-based reduction with non-contiguous lanes (eg: [6])
Only a single thread per label will update the feature in global memory

Algorithm 3: Function for feature update with conflict detection
1 operator feature_update_cd(mask, e, s)
2 peers← __match_any_sync(mask, e)
3 rank← __popc(peers & lanemask_lt())
4 leader← rank = 0
5 peers← peers & lanemask_gt()

▷ Reduce features among peers
6 while __any_sync(mask, peers) do
7 next← __ffs(peers)
8 s′ ← __shuffle_sync(mask, s, next) ▷ Reduction step
9 if next ̸= 0 then s← s+ s′

10 peers← peers & __ballot_sync(mask, rank is even)
11 rank← rank >> 1

▷ Only the leader updates the features
12 if leader then atomicAdd(&S[e], s)

Labels

Surface: step 0

1 21 1 2 2 1 1

6 8 9 79 4 10 8

15 8 13 717 4 10 8

5 1 6 3 47 2 8

23 8 13 717 4 10 8

Surface: step 1

Surface: step 2

Surface: step 3

Parallel masked tree-based reduction for conflict
detection during surface computation.
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Conflict Detection: example

Example showing the different number of
updates for various algorithms

HA and FLSL vote only once per segment
HA segments are limited by the tile border
(yellow line)

Conflict Detection remove redundant
updates on the same line

“lower bound” is one single vote per
connected component

algorithm #updates pixels generating updates
naive 229
HA 119
FLSL 101
HA+CD 80
FLSL+CD 48
lower-bound 10

F. Lemaitre – A. Hennequin – L. Lacassagne Taming Voting Algorithms on GPUs for an Efficient Connected Component Analysis Algorithm ICASSP 2021 9/15



Introduction Connected Component Analysis Results Conclusion

On-the-fly Feature update: concurrent algorithm

Algorithm 4: Concurrent on-the-fly feature update

operator otf_merge(e1, e2)
1 e1 ← Find(e1)
2 e2 ← Find(e2)
3 __threadfence()
4 while e1 ̸= e2 do
5 if e2 < e1 then swap e1, e2
6 e← atomicMin(&T[e2], e1) ▷ label merge
7 __threadfence()
8 s← atomicExch(&S[e2], 0) ▷ feature extraction
9 atomicAdd(&S[e1], s) ▷ feature merge in current root

10 __threadfence()
11 if e = e2 then break
12 e2 ← e

▷ Ensure the features have reached an actual root
13 a← Find(e1)
14 __threadfence()
15 while a ̸= e1 do
16 s← atomicExch(&S[e1], 0)
17 atomicAdd(&S[a], s)
18 __threadfence()
19 e1 ← a
20 a← Find(e1)
21 __threadfence()

Compute features for temporary labels and move features
along the way when label unions are recorded
Enhancement of Komura/Playne equivalence to support
feature moves: same lock-free guarantee
Tree based reduction that follows the Union-Find structure
Correctness of the algorithm rely on precise
__threadfence positioning
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Example of 3 concurrent merges: 3 ≡ 2 , 4 ≡ 2 and 2 ≡ 1 . Lifelines of labels
during OTF merge. Solid black lines are lifelines of labels as root. Lines are dashed
when label is no longer a root. Black arrows are equivalence recording (Unions).
Blue arrows are feature movements. Chronological order is from left to right.
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Benchmark methodology

random 8192×8192 (8k) images of varying density (0% - 100%), granularity (1 - 16,
granularity = 4 close to natural image complexity)
percolation threshold: transition from many smalls CCs to few larges CCs

8C: density = 40%
4C: density = 60%
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Number of conflicts: theoretical analysis

naive HA HA+OTF HA+CD FLSL FLSL+OTF FLSL+CD
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Naive number of updates is linear with the density
HA and FLSL have roughly the same number of updates/conflicts

For density ∼ 100%, FLSL have less updates
Number of conflicts is low before the percolation threshold (d = 60%)
OTF is the most effective to reduce the number of conflicts

Despite the small increase in number of updates
CD highly reduce both updates and conflicts after the percolation threshold

it has almost no impact before it
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A100 Density performance

naive HA HA+OTF HA+CD FLSL FLSL+OTF FLSL+CD
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FLSL alone is effective only for high granularity (low detail images)

Both CD and OTF are effective at mitigating serialization

OTF shows a small overhead

Even combined with either CD or OTF, HA still suffers from the lost of parallelism due to its partial
segment nature.

⇒ FLSL+CD is the most effective combination
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Average throughput

Algorithm g = 1 g = 4 g = 16 full image
naive 0.966 (×0.23) 0.994 (×0.08) 0.985 (×0.04) 0.337 (×0.02)
HA 4.22 (×1) 13.2 (×1) 25.8 (×1) 16.6 (×1)
HA+OTF* 14.6 (×3.5) 28.7 (×2.2) 59.3 (×2.3) 66.2 (×4.0)
HA+CD* 13.8 (×3.3) 23.9 (×1.8) 27.4 (×1.1) 16.6 (×1.0)
FLSL* 4.85 (×1.1) 19.1 (×1.4) 61.9 (×2.4) 244 (×15)
FLSL+OTF* 20.8 (×4.9) 65.1 (×4.9) 160 (×6.2) 238 (×14)
FLSL+CD* 24.5 (×5.8) 83.2 (×6.3) 170 (×6.6) 244 (×15)
* : our contributions

Table: Average CCA throughput (Gpix/s) for 8192×8192 on an Nvidia A100

When the image is completely white (foreground), the naive version becomes completely serial

Naive version poorly uses the parallelism of high-end GPUs due to the extreme serialization of atomic
memory accesses

All feature updates are fully serialized and all the benefits from parallelism have vanished

compared to the first direct (and naive) algorithm, FLSL+CD achieves a ×700 speedup and is always
the most effective in average
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Conclusion

we achieved our goal to overcome the serialization when computing the features by
reducing the number of conflicting memory accesses

three new techniques:
FLSL: Faster LSL with RLE, which is the natural extension of HA with full runs
OTF: merging features On-The-Fly during the merging of the connected components
CD: Conflict Detection within a warp

FLSL+CD outperforms all existing implementations
from ×5 up to ×15 faster than State-of-the-Art

As the CCA is finally very efficient for all granularities and densities, we plan to develop a
3D version for medical imaging.
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Parallel State-of-the-art on CPU

Parallel Light Speed Labeling(LSL) [7](L. Cabaret, L. Lacassagne, D. Etiemble) (2018)

parallel algorithm for CPU
based on RLE (Run Length Encoding) to speed up processing and save memory accesses
current fastest CCA algorithm on CPU

FLSL = Faster LSL [4](F. Lemaitre, A. Hennequin, L. Lacassagne) (2020)

SIMD algorithm for CPU
based on RLE (Run Length Encoding) to speed up processing and save memory accesses
current fastest CCL algorithm on CPU
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Parallel State-of-the-art on GPU

Playne-Equivalence [3](D. P. Playne, K.A. Hawick) (2018)

direct CCL algorithm for GPU (2D and 3D versions)
based on the analysis of local pixels configuration to avoid unnecessary and costly atomic
operations to save memory accesses.

HA32/64 [5](A. Hennequin, Q. L. Meunier, L. Lacassagne, L. Cabaret) (2018)

direct CCL and CCA algorithm for GPU (2D 4-connexe)
use warp level intrinsics and sub-segment data structure to save memory accesses.

BKE [8](S. Allegretti, F. Bolelli, and C. Grana) (2019)

direct CCL for GPU (8-connexe)
use 2×2 blocks

only HA tackles CCA implementation
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Direct algorithms are based on Union-Find structure

Algorithm 5: Rosenfeld labeling algorithm
1 for y = 0 : h− 1 do
2 for x = 0 : w− 1 do
3 if I[y][x] ̸= 0 then
4 e1 ← E[y− 1][x]
5 e2 ← E[y][x− 1]
6 if (e1 = e2 = 0) then
7 ne← ne + 1
8 e← ne
9 else
10 r1 ← Find(e1, T)
11 r2 ← Find(e2, T)
12 e← min+(r1, r2)
13 if (r1 ̸= 0 and r1 ̸= e) then T[r1]← e
14 if (r2 ̸= 0 and r2 ̸= e) then T[r2]← e

15 else
16 e← 0

17 E[y][x]← e

Algorithm 6: Find(e, T)
1 while T[e] ̸= e do
2 e← T[e]

3 return e ▷ the root of the tree

Algorithm 7: Union(e1, e2, T)
1 r1 ← Find(e1, T)
2 r2 ← Find(e2, T)
3 if (r1 < r2) then
4 T[r2]← r1
5 else
6 T[r1]← r2

Algorithm 8: Transitive Closure
1 for i = 0 : ne do
2 T[e]← T[T[e]]

Parallel algorithms have to do:
sparse addressing⇒ scatter/gather SIMD instructions (AVX512/SVE)
concurrent min computation⇒ lock-free union (CUDA)F. Lemaitre – A. Hennequin – L. Lacassagne Taming Voting Algorithms on GPUs for an Efficient Connected Component Analysis Algorithm ICASSP 2021 4/12
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Classic direct algorithm: Rosenfeld

Rosenfeld algorithm is the first 2-pass algorithm with an equivalence table
when two labels belong to the same component, an equivalence is created and stored into the
equivalence table T
eg: there is an equivalence between 2 and 3 (stair pattern) and between 4 and 2 (concavity pattern)
stair and concavity are the only two two patterns generating equivalence
here, background in gray and foreground in white, 4-connectivity algorithm
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Equivalence merge & concurrency issue

The direct CCL algorithms rely on Union-Find to manage equivalences
A parallel merge operation can lead to concurrency issues:
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1st example (top-left): no concurrency, T[3]← 1, T[4]← 1

2nd example (top-right): no concurrency, T[3]← 1, T[4]← 2

3rd example (bottom-left): benign concurrency, T[4]← 1, T[4]← 1

4th example (bottom-right): concurrency issue, T[4]← 1, T[4]← 2
4 can’t be equal to 1 and 2
⇒ 4 has to point to 1 and 2 has to point to 1 too…
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Equivalence merge: lock-free based concurrent implementation

The merge function, introduced by Komura and enhanced by Playne and Hawick, solves the
concurrency issues by iteratively merging labels using atomic operations in a lock-free scheme

Algorithm 9: merge(T, e1, e2)
1 while e1 ̸= e2 and e1 ̸= T[e1] do
2 e1 ← T[e1] ▷ root of e1

3 while e1 ̸= e2 and e2 ̸= T[e2] do
4 e2 ← T[e2] ▷ root of e2

▷ ”Compare And Swap” loop
5 while e1 ̸= e2 do
6 if e2 < e1 then swap e1, e2
7 e← atomicMin(&T[e2], e1) ▷ Convergence is faster with atomicMin than atomicCAS
8 if e = e2 then e2 ← e1
9 else e2 ← e

By definition, e ⩽ T[e2], so:
if e = e2: no concurrent write, update of T is successful, terminates the loop
if e < e2: concurrent write, T was updated by another thread, need to merge e and e1

F. Lemaitre – A. Hennequin – L. Lacassagne Taming Voting Algorithms on GPUs for an Efficient Connected Component Analysis Algorithm ICASSP 2021 7/12
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State-of-the-Art: Hardware Accelerated (HA)

The algorithm is divided into 3 kernels:

strip labeling: the image is split into horizontal strips
of 4 rows. Each strip is processed by a block of 32× 4
threads (one warp per row). Only the head of a
sub-run (sub-segment) is labeled

border merging: to merge the labels on the
horizontal borders between strips

relabeling / features computation: to propagate the
label of each sub-run to the pixels or to compute the
features associated to the connected components

HA algorithm uses sub-runs (compared to pixel-based
algorithms) to reduce number of updates, but:

runs cannot span multiple tiles

maximal run-length is limited to tile width (64)

HA is the only State-of-the-Art
algorithm that reduces the
number of atomic accesses in
order to reduce conflicts (GTC
2019)
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On-the-fly Feature update: sequential algorithm

Algorithm 10: Sequential on-the-fly feature
update

1 operator otf_merge(e1, e2)
2 e1 ← Find(e1)
3 e2 ← Find(e2)
4 if e1 ̸= e2 then
5 if e2 < e1 then swap e1, e2
6 T[e2]← e1
7 s← S[e2] ▷ extract feature

8 S[e2]← 0 ▷ reset feature

9 S[e1]← S[e1] + s ▷ merge feature

Compute features for temporary
labels and move features along
the way when label unions are
recorded

Tree based reduction that follows
the trees from Union-Find

Updates are spread on all the
temporary labels of a component
instead being concentrated only
in the final root

More work is required as features
need to be first computed for
each temporary labels, and
extracted
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Emulation of __match_any_sync

Algorithm 11: Emulation of __match_any_sync
1 operator match_any_sync(mask, v)

▷ Thread must be in mask

2 if not (mask & lanemask_eq()) then return 0

3 ballot← 0
4 do ▷ One iteration per distinct value

▷ Remove all threads from previously find group

5 mask← mask & ~ballot
▷ Find the first thread among the remaining ones

6 leader← __ffs(mask)− 1

▷ Broadcast the value of the leader

7 ref← __shfl_sync(mask, v, leader)

▷ Mask of all threads having the same value as the leader

8 ballot← __ballot_sync(mask, v = ref)
9 while not (ballot & lanemask_eq())

10 return ballot
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