
REAL TIME EXECUTION OF OPTIMAL EDGE
DETECTORS ON RISC AND DSP PROCESSORS

Lionel LACASSAGNE1,2, Frantz LOHIER1,2, Patrick GARDA1

1Laboratoire des Instruments et Systèmes 2Electronique Informatique Applications
Université Pierre et Marie Curie Bâtiment 4, Burospace

4 place Jussieu - B.C. 252 route de Gisy
75252 Paris Cedex 05, FRANCE 91571 Bièvres Cedex, France

lionel | lohier | garda@lis.jussieu.fr eia@wanadoo.fr

ABSTRACT

This paper presents the real time implementations of the Canny-
Deriche optimal edge detectors on RISC and DSP processors.
For each type of architecture, the most leading optimization
techniques are described. A comparison is then made between
RISC and DSP processing speeds.

1. INTRODUCTION

Canny-Deriche operators have asserted themselves to the edge
detection field which stands as a fundamental component of
image processing and computer vision.

The main drawback is the prohibitive computational power they
require. It has led people to design dedicated hardware
implementations (FPGA, ASIC) to achieve the real time
execution of these detectors. On the other hand, the still
increasing performance of RISC and DSP calls into question the
need for a dedicated architecture.

This paper shows that crafty software implementation of
Canny-Deriche edge detectors may achieve real time execution on
state of the art RISC and DSP processors.

2. DERICHE’S OPERATORS

2.1 Reminder of Canny-Deriche optimal filters

Canny's approach [1] consists in finding the optimal FIR filter
which satisfies the three following constraints for a Heaviside
input signal: good detection, good localization, low maximum
multiplicity due to the noise.

Deriche [3], using Canny's approach, has looked for an IIR filter
which satisfies the same constraints. He got the same differential
equation, but while changing the conditions at the limits, he
obtained, for the Canny's performance index, an improvement of
25%.

Deriche’s operators are used for two important methods of edge
detection. The first is based on the gradient maxima, the second,
on the laplacian's zero crossings. The state of the art methods
combine both of them. In this paper we will focus on the gradient
method. The implemented operators are those proposed by
Deriche in [3].

2.2 Deriche’s gradient

The directional derivative is the result of a smoothing in one
direction followed by a derivation in the other.

The smoothing operator equation is:

[]y n k x n e x n e y n e y n1 1
2

11 1 2 1 2() () () () () ()= + − − + − − −− − −α α αα

[]y n k e x n e x n

e y n e y n

2

2
2

2

1 1 1 2

2 1 2

() () () () ()

() ()

= − + − − +

+ + − +

− −

− −

α α

α α

α α

y n y n y n() () ()= +1 2 , k
e

e e
=

−
+ −

−

− −

()1
1 2

2

2

α

α αα

The derivative operator is:

y n kx n e y n e y n1 1
2

11 2 1 2() () () ()= − − + − − −− −α α

y n kx n e y n e y n2 2
2

21 2 1 2() () () ()= + + + − +− −α α

y n y n y n() () ()= +1 2 , k e= − −()1 2α

3. OPTIMIZATIONS

In this section, we introduce algorithmic and architectural
optimization techniques which lead to real-time execution on
RISC processors. The algorithm is coded in C and all
computations are done in floating point. The keys to speed up
the process are as follows: a well-fed pipeline and ALUs, a few
memory access, an efficient cache use, and the storage of
intermediary results in the registers.

3.1 Algorithmic optimization

The first optimization is to modify the equation of the filter in
order to reduce its complexity. The major breakthrough was
achieved by Garcia-Lorca in [4]. He introduced a new
decomposition of the optimal IIR edge detector with a lower
computational burden. FGL provides the same Canny’s
performance index than Deriche. Deriche’s smoother is replaced
by two passes of a first order smoother.

Causal smoothing filter : y n x n y n() () () ()= − + −1 1γ γ
Anti-causal smoothing filter : y n x n y n() () () ()= − + + +1 1 1γ γ

Deriche’s derivative filter is computed by the convolution of the
following 2×2 kernels, followed by the L1 magnitude:

−
−











1 1
1 1

 and
− −
+ +











1 1
1 1

We can even get a lower complexity by replacing the two passes
of the FGL’s smoother by a single pass of a 2nd order filter which
is the square of the first order filter. The following table shows
that the Garcia-Lorca’s operator complexity is half that of
Deriche.

Deriche FGL 1st order FGL 2nd order
MUL ADD MUL ADD MUL ADD

26 24 16 14 12 14

Array 1: filter complexity

3.2 Memory access optimization

When the image is vertically swept, two neighboring pixels in the
same column are not stored side by side in the memory. As this
can cause read cache faults, the vertical smoothing is replaced by
a horizontal filter applied to the transposed image. As Deriche
and Garcia-Lorca filters are recursive, the storage of the output in
a register, as the input of the next iteration, decreases the
transfers from the RAM to the cache.

3.3 Processing optimization

Loop-unrolling is a very efficient technique that ensures a better
use of the pipeline [5]. Instead of running the loop n times , the
loop body is duplicated k time, and the new loop body is
executed n/k time. Loop unrolling has to be performed by hand as
state of the art optimizers lake to do so automatically for
recursive equation.

The following example shows the pseudo-code for Garcia-
Lorca’s 2nd order filter. The loop is unrolled 3 times with regard
to the filter formula. At the beginning of the loop yk contains the
value Y[i-k].

y n b x n a y n a y n() () () (= + − + −0 1 21 2) (1)

x X i0 ← [] , x X i1 1← +[] , x X i2 2← +[]

y b x a y a y0 0 0 1 1 2 2← + + , y b x a y a y2 0 1 1 0 2 1← + + ,

y b x a y a y1 0 2 1 2 2 0← + +

Y i y[] ← 0 , Y i y[]+ ←1 1 , Y i y[]+ ←2 2

4. BENCHMARKING

4.1 Operational scheme

We benchmarked four RISC processor families for image sizes
varying from 128 to 640. Each measure was done 10 times, then
linear regression was performed to get more reliable results. Two
versions of each filter (Deriche and Garcia-Lorca) were
implemented, the first without optimization, the second with all
the optimizations described in the previous section. The
processor characteristics are summarized in the table below1:

Processors Frequency
(MHz)

Cache L1
(KB)

Cache L2 /
L3 (KB)

RAM
(MB)

PA 8000 180 1+1 MB 0 / 0 64
Ultra Sparc 1 143 16+16 512 / 0 64

Pentium MMX 200 16+16 512 / 0 48
Alpha 21164 500 8+8 96 / 8 MB 128

Table 2: processors characteristics

4.2 Results

The table gives the time in milliseconds for computing the
gradient of image sizes 128, 256 and 512. The last two columns
show the maximum image size for which the processing is
performed in real time.

128 256 512 Real Time

processors Deriche FGL Deriche FGL Deriche FGL Deriche FGL

PA 8000 25.9 10.8 114.4 43.8 690.5 301.8 158 246

Ultra Sparc1 20.1 11.0 94.5 47.4 562.1 253.0 172 234

P 200 MMX 29.1 11.9 149.8 63.5 660.6 259.9 144 216

Alpha 500 10.5 4.7 46.2 13.3 262.2 71.7 248 392

Table 3: RISCs’ results

The graphs below show the running time for Deriche and Garcia-
Lorca algorithms (optimized and non optimized) as a function of
the image size.

1 For the Pentium, MMX instructions are not used in this

implementation, but we took advantage of the cache size,
which is bigger than for MMX Pentium

PA 8000

0.0

500.0

1 000.0

1 500.0

2 000.0

12
8

16
6

20
4

24
2

28
0

31
8

35
6

39
4

43
2

47
0

50
8

54
6

58
4

62
2

Ultra Sparc

0.0

500.0

1 000.0

1 500.0

2 000.0

12
8

16
6

20
4

24
2

28
0

31
8

35
6

39
4

43
2

47
0

50
8

54
6

58
4

62
2

Pentium 200 MMX

0

500

1000

1500

2000

12
8

16
4

20
0

23
6

27
2

30
8

34
4

38
0

41
6

45
2

48
8

52
4

56
0

59
6

63
2

Alpha

0

200

400

600

800

12
8

16
4

20
0

23
6

27
2

30
8

34
4

38
0

41
6

45
2

48
8

52
4

56
0

59
6

63
2

Figure 1: RISC

4.3 Results analysis

The graphs look alike. The gain between non and optimized
version is greater for Deriche (50%) than for Garcia-Lorca. This
may be due to the quality of the compiler: as Garcia-Lorca’s
filter is very simple, it is more optimized by the compiler. But
the running time ratio between Deriche and Garcia-Lorca filters is
in the range 2-3.

The PA8000, Ultra1 and Pentium are very close, but the Alpha
is by far the fastest: from 2-3 to 2-5 times respectively for
Deriche and Garcia-Lorca filters. The cache faults appear on all
processors and for the same image sizes. For those critical sizes,
the cache fault number is connected to the cache size (especially
the L1 cache).

5. DSP IMPLEMENTATION

In the previous section, we have shown that real-time
performance is now conceivable for reasonable sizes on RISC
processors. We now introduce 2 DSP architectures that lead to
even better performance using assembly language.

5.1 SPMD processing on the C80 VLIW advanced DSPs

TI’s C80 is capable of 2,5 Gops at 60 Mhz thanks to a RISC
floating point processor (the Master Processor, MP) and to 4
advanced 32 bits fixed point VLIWs (or Parallel Processor, PP),
all gathered in a single chip. Processors access internal memory
(cache or general purpose static memory) through a crossbar thus
inducing minimum contention. An advanced DMA controller
performs all processors data transfers between off-ship and on-
chip memory where processing takes place.

5.1.1 VLIW instructions

4 sets of operations can be done in parallel in a single cycle of the
3 levels instruction pipeline. PP’s 64 bits VLIW instruction can
use the multiply hardware, the general ALU hardware and 2
memory load/store address units:

• PP’s multiply hardware: among many possible
combinations, 2 cycles are necessary for 2 rounded and
truncated multiplies between 2 16 bits integers and 2
fixed point constants.

• PP’s ALU: it’s extremely powerful and explains the
C80’s overall calculation performance. It can combine
algebraic and arithmetic operations in a single cycle. Its
general equation is of the form () ()CB,gCB,f&A ±
where A, B and C correspond to the raw ALU input
ports (& stands for bitwise logical AND). B can result
from a register left shift (\amount\regB ≡) and C
can be used to generate a mask of a specified number of
bits (12C n −≡). f and g summarize independent

boolean functions.
• PP’s address units: 2 independent powerful address

units can access data without contention in a direct or
indexed way. Moreover arithmetic (+/-) is allowed on
any pointer register before or after the memory access.

5.1.2 Hardware loop controllers

To avoid handling a loop counter and the associated compare and
branch instructions, each PP features a hardware mechanism to
cope with up to 3 nested loops. Thus, loop unrolling techniques
aren’t necessary to gain performance.

5.1.3 Edge detection on the PPs

• Complexity for first order FGL IIR filter:

 PP’s registers file is “multi-ported”. Registers can be used both
as operand and destination of operations. Registers are modified
at the end of all the parallel operations. The following pseudo
code gives the initialization phase and the 2 cycles kernel loop
(‘;’ stands for sequential, ‘||’ for parallel):

 Init. : x ← X[0] || τ ← 0 ; θ ← x⋅b0 || x ← X[1]
 1st cycle : θ←x⋅b0 || y←θ+τ || x←X[i←i+1]
 2nd cycle: τ← y ⋅a1 || Y[j←j+1] ← y

 (cf equation 1, a2=0, τ and θ are intermediate results)

• Gradient magnitude computation:

To achieve 11 cycles for 4 pixels per PP, we use the ALU
SIMD processing ability. The general ALU’s equation can
operate on a 32 bits register seen as 4 separate bytes. A so called
4 bits multiple status flag (mf[1…4]) is maintained for each split
operation. This flag can be used to merge 4 masks in a 32 bits
register which in turn can be used to perform 4 selections
between bytes from two 32 bits registers. This technique allows
to calculate 4 absolute values in just 2 cycles.

Filling the VLIW slots as possible and taking advantage of PP’s
ALU SIMD feature, we obtain the following estimations:

Per PP Tot. Cycles
Cycles/pixel Num. pass

FGL 1st order 2 8 4×5122

Gradient 11/4 1 11/16×5122

Total cycles 1228800
Raw duration at 60 Mhz (without transfer) 20 ms

Table 4: C80 raw estimations for a 5122 image

5.1.4 DMA data transfer during calculation

While processing, the DMA brings the completed data back to
external memory and downloads new data to be processed. The
offset of the next peace of external buffer’s data is automatically
handled by the DMA. During transfer, no contention occurs with
processing as internal memory banks are carefully toggled. On
the other hand, DMA requests contention occur as the DMA is a
shared resource among processors.

5.2 VLIW processing on the C6x advanced DSP

VLIW processors appear as an alternative to the MIMD parallel
processors such as the C80. TI’s C62 is a VLIW DSP capable of
1.6 GIPS at 200 Mhz. This performance is results of :

• a 12 levels VLIW instruction pipeline with 5ns cycle
• 256 bits VLIW instruction coding 8 operations which

can partially be executed sequentially or concurrently1

• 2 16x16 multiplies, 1 shift, 2 adds/subtracts, 1 branch, 2
loads/stores (with pointer modification) can be done in
parallel thanks to 8 independent functional units

1 Texas calls this the VelociTITM technology.

• Several DMAs leading to about 250 Mbytes/s peak.

5.2.1 Optimization techniques

Software pipelining is the main technique used to obtain
performance from the C6x. Due to the different latencies of
operations in the execution level of the pipeline (2 cycles for
multiply, 5 for a load operation, 6 for a branch and 1 cycle for
any other operation), we maximize the use of the different units
by executing the largest number of parallel operations for the
loop body keeping in mind that they do not concern the same
processing iteration. We then provide a prolog and epilog piece
of code to guarantee that operations get properly time stamped
in accordance with the body. In addition, the C6x features 2 split
16 bits add/subtracts which individually allow 2 parallel
additions of 2 16 bits numbers, all in a single cycle (using 2
functional units only). Applying those techniques yields to the
following estimations:

Cycles/pixel Num.pass Tot cycles
FGL 1st order 1/1 8 8×5122

FGL 2nd order 2/1 4 8×5122

Gradient 4/2 1 2×5122

Total cycles for FGL 1 or FGL 2 and Gradient 2621440
Raw duration at 200 Mhz (without transfer) 13 ms

Table 5: C62 raw estimation for a 5122 image

5.2.2 DMA transfer during calculation

As with the C80, parallel DMA transfer is possible without
contention, but C6x’s DMA offers less features and requires
more processor intervention when downloading 2D array’s of
data in several blocks. Its throughput is also lower than the 480
Mbytes/s C80’s DMA peak performance.

5.3 Comparing both DSP architectures

As far as the raw estimations are concerned, both DSP run
almost as fast for the gradient calculation, but the C6x is faster on
the IIR filter thanks to its high operation frequency. Including the
cost of memory transfers would determine which of those 2
architectures is best suited for low level image processing.

6. CONCLUSION

In the section 4, we have shown through benchmarks that C
software implementation on floating point RISC processors
achieve real time execution of optimal filters for image sizes up to
3842 on DEC Alpha processors and up to about 2562 on others.
In the section 5, we have shown through estimations, that
software implementation in assembly language on advanced fixed
point DSPs achieve real time execution for image size larger than
5122.

More specifically, 5122 images may be processed at 50 frames/s
by the C80 at 60 Mhz, and 75 by the C62 at 200 Mhz. However
that does not consider the impact of memory transfer. In the
worst case, this may double the processing time, leading to a 25
frames/s processing of 5122 Images.

Those results outperform state of the art implementation of
optimal edge detectors on DSPs and FPGAs [5].

7. REFERENCES

[1] J.F. Canny. A computational Approach to Edge Detection,
IEEE Trans on PAMI, vol 8,6 p79-698 (1986).

[2] R. Deriche. Fast Algorithms for low level-vision, IEEE
Trans. on PAMI, vol 12,1 (1990).

[3] F. Garcia-Lorca. Filtres recursifs temps reel pour la
detection de contours : optimisations algorithmiques et
architecturales. These Universite d’Orsay (1996).

[4] J.L. Hennessy, A. Patterson. Computer Architecture. A
quantitative approach. 2nd edition Morgan Kaufmann
Publishers (1996).

[5] Y. Kim, kim@ee.washingtom.edu. Whasington University
http://icsl.ee.washington.edu/projects/iclib.

