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ABSTRACT

This article presents a new image segmentation algorithm
based on a Split & Merge approach. By nature, the execution
time of Split & Merge algorithms is data-dependent, as their
halting conditions are tied to the homogeneity of each region.
While previous algorithms made the Split step less sensitive
to input data, the execution time of the more complex Merge
step remains highly sensitive to image content.

This paper tackles the sensitivity and performance
problems from a system and architecture perspective.
Memory reallocations due to array fusions are eliminated with
the introduction of a TTA (Three Table Array) structure in the
Merge step. As iterating over entries in this structure causes
a loss of memory locality, we propose two new mechanisms
that implement a software cache to mitigate this.

An experimental study on an embedded system (Nvidia
Jetson Xavier NX) has shown our Merge algorithm to be 10.6
times faster than the state-of-the-art Split & Merge algorithm
for 960 × 720 images. Moreover, the execution time of our
algorithm is also more resistant to image characteristics.

Index Terms— Image segmentation, Merging, Embedded
systems, Data structures

1. INTRODUCTION

Image segmentation is a classical operation in image
processing. It divides an image into several regions that
match its perceived structure. It is one of the first steps
in the resolution of complex problems: scene interpretation,
object recognition, tracking, etc. A large amount of literature
has been produced on this subject, notably thanks to the
progress of machine learning. However, the execution time
and the energy consumption of these algorithms make their
use incompatible with embedded systems. Notably, Panoptic
[1], one of the best algorithms with regard to quality, has an
execution time of 100ms with a 200W GPU (Nvidia V100)
to segment and label 1024 × 2048 images. It is therefore
far from reaching a real-time execution time of 40ms, (which
is the rate of image acquisition) or an energy consumption
of roughly 10 Watts, which is what is available in heavily
constrained embedded systems.

This issue can be solved by using a more simple algorithm
and by making a compromise between speed/quality/power
consumption. Such a lightweight algorithm can also be
used to pre-process and over-segment the image before its
analysis by a neural network-based algorithm, for instance,
one that uses superpixels [2]. This can decrease the data size
in addition to filtering unwanted noise. These lightweight
algorithms can be found throughout the classical image
segmentation literature: some approaches are built upon a
series of splits and merges [3, 4, 5], others use watershed lines
[6, 7, 8, 9], or even trees of shapes (MaxTree) [10, 11, 12].
However, all are still too slow and too power-hungry for our
target. Moreover, the execution time of these algorithms is
highly sensitive to the nature of the images rather than just
their size.

In this article, we redesign a Split & Merge algorithm
[5] by taking into consideration architectural and systems
constraints on embedded systems. The proposed solution uses
two new strategies that not only remove memory allocations,
using a TTA data structure, but also improve memory locality
by using a software cache-based approach.

A single-threaded evaluation on a Jetson Xavier NX CPU,
configured to consume 15W of power highlights:

• An execution time of the Merge step that is almost
independent of the merge criteria, independent of image
characteristics, and almost proportional to the number of
produced regions by the Split step.

• An acceleration by a factor that ranges from × 4 to
× 10 when compared to state-of-the-art Split & Merge
algorithms.

• An equivalent segmentation quality.

Section 2 presents the general principles of Split &
Merge approaches. Section 3 describes the new proposed
algorithms for the Merge step, and Section 4 evaluates our
new algorithms to the Optimal Split & Merge algorithms.

2. SPLIT & MERGE SEGMENTATION

Split & Merge algorithms segment the image into multiple
homogeneous regions that match the perceived structure of



source
image

segmented
image

Split

homogeneous ?

T Fsplit end of
split

Adj. Table

3 7
6 4

T
T
F

F fusionselection

best
neighbor

Merge

exists ?

Fig. 1: Processing steps of the Split & Merge approach

the image. It achieves this in two major steps, as illustrated
on Figure 1: a Split step, and a Merge step. The first phase
recursively slices the image, either horizontally or vertically,
until a homogeneity criterion is reached (e.g. a maximum
variance in each area). Matching complex structures with
rectilinear shapes results in an over-segmented image and a
second step is therefore required to merge similar neighboring
regions.

While the execution time of the Split step used to be
significant, the Optimal Split algorithm was introduced by
Merigot to both reduce this execution time and to improve the
image partitioning scheme [4]. Unlike classical algorithms,
which cut the current region in its center, Optimal Split finds
an optical cut that maximizes region homogeneity (whose
criterion will be noted as VS) and reduces the number of
produced regions.

While Optimal Split produces a better image partition, a
Merge step is necessary to fit complex shapes (e.g. concave
objects on the image), which combines neighbors iteratively.
In order to make these iterations more efficient, Aneja et al
proposed to generate an adjacency table using the partition
that has been produced by the Split step [5]. Using this table,
the Merge step successively selects regions of interest. For
each selected region RS , the best neighbor is searched by
iterating over adjacent regions. This best neighbor of RS

is the one with the lowest combined variance with RS , if
lower than a given threshold. If no such neighbor exists (i.e.
combined variance too high), then RS is marked as invalid
and another region is selected. Otherwise, it is merged with
RS , and the best neighbor search restarts. The Merge step
ends when all regions of interest have been processed. Its
intrinsically sequential nature causes important variations in
the final partitioning. Its execution time is closely tied to
image characteristics and the fusion order, and is therefore
data-dependent. Moreover, this execution time is still too high
for a real-time execution on embedded devices.

3. A NEW MERGE ALGORITHM

As mentioned in the previous section, the execution time of
Aneja’s Split & Merge algorithm is inadequate for real-time
segmentation on smaller devices, especially because of the
high cost of the Merge phase. This performance limitation
stems from memory reallocations when concatenating lists of
neighbors, which happen when merging regions.

We therefore propose a novel strategy to improve the
execution time of this Merge step and make it more robust
to image characteristics. First, we propose the use of a
Three Table Array (TTA) data structure to avoid memory
reallocations when merging lists of regions. However,
iterating on TTA does not take full advantage of memory
locality. To mitigate this performance issue, we propose two
more mechanisms which are based upon a software cache.

3.1. Suppression of allocations in region fusions

An adjacency table is maintained by the Merge algorithm,
as proposed by Aneja et al [5]. It contains one entry for
each rectangular region initially produced by the Split step
(as shown in Figure 2a). Algorithmically, merging two
regions means concatenating two arrays. This is expensive
as it generates allocations of increasing size, which leads
to memory fragmentation, and therefore page faults due to
mmap’s lazy allocation strategy.

In order to make lists fusions reallocation-free, we propose
the use of a specific structure called TTA (Three Table Array).
It is an alternative to the Union-Find structure in Connected
Component Labelling algorithms [13]. It is made out of three
arrays of integers R (Root), N (Next) and T (Tail). All three
are allocated only once, at the start of the Merge algorithm,
with their size being the number of initial rectangular regions.
Lists that correspond to merged regions are represented using
these integers (e.g. [1, 3, 7] and [2, 6, 4] in Figure
2b). As such, for each initial region: R contains the identifier
of the root of the list the region belongs to (e.g. 1 for region
3 as it belongs to [1, 3, 7]), N contains the index of the
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Fig. 2: Fusion of [1,3,7] and [2,6,4] lists

next element (e.g. 7 for region 3) and, if the region is the
root, then T contains the index of the last element (e.g. 7 for
region 1 because 1 is the root of [1, 3, 7]).

This structure simplifies list concatenations as shown by
the example of Figure 2b, with the fusion of [1, 3, 7]
and [2, 6, 4]. Several modifications have been made in
the 3 arrays: cells 2, 6, and 4 of R now contain 1, as it is the
root of the merged region. Cell 7 of N now contains 2 and
links both lists. Cell 1 of T is now 4 and contains the index
of the end of the new list. No memory reallocation is needed
here, all modifications are done in place.

Gains provided by this new structure have been confirmed
through a comparison with an array-based implementation
(Figure 2a) by randomly merging lists. For different array
sizes, the dotted line of Figure 3 shows the acceleration factor
provided by TTA, over an array-based implementation using
the realloc function from the C standard library to perform
fusions. In this figure, we also show an implementation that
uses the std::vector from C++. This other allocation
method tries to reduce systematic reallocations by over-
allocating memory (capacity parameter). Although this
third approach sensibly improves performances, it remains
less efficient than using TTA. While we notice a decrease
in the efficiency of TTA when the volume of data increases
due to the loss of memory locality, we do note, however, that
TTA is 2.7 × faster than realloc whereas std::vector
is 0.85 × for 106 elements, which is the targeted order of
magnitude of the initial number of regions.

3.2. Addition of a cache to improve best neighbor search

As seen previously, switching to TTA creates a memory
locality problem. Indeed, the best neighbor is searched
consecutively using a variance criterion. This implies
iterating multiple times on the neighbor list. While this was
done on a contiguous array in the original Split & Merge
algorithm, our approach can generate multiple jumps in the
N array when using a TTA. In order to reduce the impact, we
introduce a software cache can better re-use work done during
the previous iteration, and a mechanism that will take a set of
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Fig. 4: Insertion of [4, 9, 14, 5] neighbors in software cache.
The best neighbor (18) is immediately merged whereas good
neighbors (4, 8, 14, 5) are inserted in the cache.

candidates of similar variances.
Our proposed Algorithm 1 iterates over the full

neighborhood twice: a first time to find the best neighbor
(L8), and a second time to aggregate close enough neighbors
into the cache, i.e. elements for which the variance from the
best neighbor is less than ε (L11-17). Figure 4 presents an
example of an aggregation and insertion into a cache of good
neighbors: (4, 9, 14, 5) are close enough to the best neighbor
(18) and are thus inserted into the cache.

Following this aggregation, successive fusions are done
on the neighbors in the cache (L20-27), which are then
removed from it (L23). During the fusion of a region Rk

into Ri, neighbors of Rk are added to the neighborhood list
(L24). They will therefore be able to be picked by the next
aggregation. Fusions continue until there is a shortage of
mergeable neighbors.

The number of neighbors that have to be checked each time



is therefore reduced. Moreover, these searches are done on
a continuous array. This does not only have an impact on
computation time but also data locality and therefore uses
hardware caches more efficiently.

1 Function MergeCache(nodeTree, adjTable[][])
2 validRegions ← CountValidRegions(nodeTree)
3 tta ← create tta of size nnodes

4 while can still select valid region do
5 Ni ← selectRegion(nodeTree)
6 canStillMerge ← true
7 while canStillMerge do
8 // Aggregate best neighbors

best ← best neighbor ofNj

9 vmin ← CoVariance(Ni, Nj)
10 if can not merge with best then
11 break

12 // Iterate over full neighborhood
13 foreach neighbor Nk of Nj do
14 if CoVariance(Ni, Nk)− vmin < ε then
15 CacheAdd(cache, Nk)

16 if CacheFull(cache) then
17 break

18 // Try to merge neighbors from cache
19 cacheOK ← true
20 while cacheOK do
21 Nk ← best neighbor ofNi from cache
22 if can merge NkwithN then
23 remove Nk from cache
24 MergeTTA(tta, Ni, Nk)
25 update Ni

26 else
27 cacheOK ← false

28 SetInvalid(Ni) // Do not select Ni again

Algorithm 1: Find and merge best neighbors using
software cache

3.3. A Flip flop caching strategy

While our cache-based approach improved memory locality,
neighbor aggregation still requires a double iteration: first
to find the best neighbor and then to insert good enough
neighbors into the cache.

We therefore propose a single pass strategy: when iterating
on the neighborhood, if a neighbor is found to have a better
variance than all its predecessors, then it is immediately added
to the cache and used as a reference point. Neighbors that are
still close enough to the current best neighbor are also added
to the cache. Unlike the two-pass version, some neighbors
may be inserted into the cache even if they are initially outside
the tolerance range (> ε away from best neighbor).

With this idea, new neighbors are added at the end of
the neighbor list, whereas old and unlikely-to-be-merged
neighbors stay at the beginning. This can become a worst-
case as aggregations start from the beginning of the list, and
would have to iterate over "bad" neighbors first.

To remedy this while still benefiting from memory locality,
we introduce a flipflop approach: the run remains sequential,
but its direction flips each iteration. The situation is now
flipped and what used to be a problem is now an advantage:
Neighbors that will be cached will likely be discovered
quickly. The insertion accuracy will then become equivalent
to that of the two-pass algorithm (in which insertions are
performed by knowing the reference variance)

4. QUALITATIVE AND QUANTITATIVE
BENCHMARKS

To compare ourselves to Aneja fairly, we first have to
ascertain the quality of the final segmentation. Indeed, due
to the sequential nature of Split & Merge algorithms, small
changes can lead to major differences in segmented images.
Our goal is an efficient Merge step that produces a similar
segmentation to Aneja.

This verification is performed using two similarity metrics:
the Peak Signal to Noise ratio (PSNR) and Structural
Similarity Index Measure (SSIM) [14]. They quantify the
distance between two images: two identical images will have
an "infinite" PNSR and an SSIM of 1. On the other hand, the
more the images differ, the more the PSNR and SSIM will
move towards 0.

In our case, these metrics describe how similar the
segmentations are with regard to the original image. If our
algorithms are correct, then we should observe two things:
(1) the number of regions must the same as Aneja, (2) the
PSNR and SSIM of the segmented images with respect to the
source images must be close to the ones reached by Aneja.
To test this, the algorithms have been executed on 11 images
from the CamVid urban image dataset [15, 16] (960 × 720
image sizes), with several values for the fusion criterion VM .

The evaluation of both quality metrics is shown in the
scatter plot of Figure 5, with a homogeneity criterion VM
varying from 5 (few fusions, therefore many regions after
Merge) to 30 (many fusions, therefore few regions after
Merge), with a step of 5 (i.e. 6 different values of VM ). For
each algorithm, 50 runs are performed per value of VM , which
gives us 50 different segmentations per algorithm and value of
VM , due to the randomness of Merge. Each point matches 1
run of an algorithm at a given VM : the number of regions
after Merge is presented on the x-axis, and the quality metric
(PSNR or SSIM) on the y-axis.

6 clusters of points can be observed in Figure 5: each
cluster corresponds to a value of VM , and contains 300 points
(6 algorithms × 50 runs per algorithm).

Within each cluster (same Merge criterion VM ), the number
of regions after Merge (x-axis) stays the same between runs
of the same algorithm. The segmentations of the algorithms
are therefore stable for the given criterion. Moreover, at a
given VM , our proposed algorithms keep the same number of
regions as Aneja, which confirms (1).
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Fig. 6: Execution time of individual steps of Split & Merge on CAMVID for VS=15, on Jetson Xavier NX

If we now look at segmentation quality: in the same cluster,
runs of an algorithm have different PSNR and SSIM (y-axis).
However, the magnitude of the variations is the same for
all algorithms, which highlights that our algorithms have the
same qualitative behavior as Aneja. Furthermore, the range
of SSIM and PSNR values within a cluster is comparable
between algorithms. The PSNR and SSIM also become stable
when more regions are left (VM ≤ 10). These observations
confirm that our algorithms maintain the same quality as
Aneja (which proves (2) correct).

Having numerically proved the correctness of our
algorithms with respect to Aneja, we now check this visually.
By doing so, we observe that the segmentations of our
algorithms are indistinguishable from Aneja’s.

After having shown that our algorithms give good results,
we investigate which ones are the fastest for the same quality.
We now measure the execution time of different Split &
Merge algorithms. A Jetson Xavier NX CPU has been used
as it is both highly efficient (custom Cortex ARM, close to

A76) and highly customizable (several profiles with 2, 4, or
6 cores at varying clock frequencies). In our experiments, a
power profile of 15 Watts has been used (with 2 active cores
instead of 6). All Split & Merge implementations are single-
threaded, with their executions tied to a single core, and they
are preceded by a warm-up round. Random numbers have
been generated using Mersenne Twister 19337 [17].

Execution times have been measured on the 11 CamVid
images, for parameters values VS and VM going from 5 to
30. This interval allows for fine-grained segmentations. On
each image, 5 different algorithms have been tested: Aneja,
a version with TTA only, a version with TTA and software
cache, TTA with flipflop, and Aneja with cache. For each
image, 50 runs are performed per configuration VM . The size
of the software cache is 32 and ε = 500.

The TTA structure provides a speedup of ×1.7 to ×2.8
when compared to Aneja (Figure 7a). The addition of a cache
to Aneja also improves the execution time, with a speedup
that ranges from ×2.1 to ×3.0 . However, the combination
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Fig. 8: Relative standard deviation on CamVid, VS = 15

of both TTA and the cache gives a considerable acceleration,
from 2.5 × to 10.9 × for tta+cache and 2.7 × to 10.6 ×
for tta+cache+flipflop. As execution time of the flipflop-
based algorithm remains close to that of TTA+cache. The
management of the flipflop mechanism likely has a non-
negligible cost compared to the time spent on the double pass.

An interesting property can be observed in Figures 7b and
8: the execution time of tta+cache and tta+cache+flipflop on
the image set is not only shorter, but also has a lower variation
between images. This is not the case for Aneja, which has
a variation from single to double. This pattern is also found
when observing Figure 8, with the relative standard deviations
of these studied algorithms. The addition of flipflop reduces
the variations regardless of the variance parameter. We also
note that tta+cache+flipflop remains stable, at 0.15, whereas
tta+cache varies between 0.35 and 0.15. This means that
tta+cache+flipflop is more robust to image data than the rest,
as image structure has a lesser impact on the execution time.

Now that we have shown the efficiency of our proposed
Merge algorithm, we study the full algorithms (i.e. with
both the Split phase and our Merge mechanisms). Their
execution times can be observed in Figure 6, which includes
the duration of each step (Split, Merge, and intermediate steps

such as the initialization of the adjacency table and the final
labeling). While the execution time of Aneja (Figure 6a)
increases significantly with the number of fusions, this is not
the case for TTA+cache+flipflop (Figure 6b). Its Merge step
has a stable execution time of roughly 20 ms for CamVid
images and 5 ms for classical 512 × 512 images. The Split
and the Merge steps have similar execution times and can
therefore be pipelined in a balanced manner on two cores:
the Split step on a first core and the other steps (labeling,
adjacency list computation, Merge) on the second core. A
"real-time" video rate of 25 images per second (40 ms per
image) would then be reached.

5. CONCLUSION

In this article, we have proposed a new Merge algorithm
that significantly improves the execution speed of the Split
& Merge image segmentation approach.

List fusion, one of the key operations of the Merge step, is
now performed without memory reallocation or array copy,
using a TTA data structure. We also introduced a software
cache mechanism, for which we added a flipflop iteration
strategy to compensate for the loss of memory locality, and
make best neighbor search as fast as possible.

Other than the raw execution time gains, both proposed
mechanisms make Split & Merge segmentation more robust to
intrinsic image characteristics. This makes them well-suited
to applications on embedded systems, in which respecting a
real-time video rate cadency (typically 25 images / second or
40 ms) is a key criterion, and requires a predictable processing
time.

Finally, the performance improvement of the Merge step
brings it close to the duration of the Split phase, which makes
it possible to pipeline the entire algorithm on two cores in a
balanced manner. As such, Split & Merge algorithms can be
used at a real-time video rate on embedded systems and for
large images.
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