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Abstract 
 
We consider the implementation of 16-bit floating 

point instructions on a Pentium 4 and a PowerPC G5 for 
image and media processing. By measuring the execution 
time of benchmarks with these new simulated 
instructions, we show that significant speed-up is 
obtained compared to 32-bit FP versions. For image 
processing, the speed-up both comes from doubling the 
number of operations per SIMD instruction and the better 
cache behavior with byte storage. For data stream 
processing with arrays of structures, the speed-up mainly 
comes from the wider SIMD instructions.. 

 
1. Introduction 

 
Graphics and media applications have become the 

dominant ones for general purpose microprocessors and 
have led to the introduction of specific instruction set 
extensions such as the SIMD multimedia extensions now 
available in most ISAs. Graphics and media applications 
either use integer or FP computation. While some 
applications need the dynamic range and accuracy of 32-
bit FP numbers, a general trends is to replace FP by 
integer computations for better performance when 
hardware resources are limited (embedded applications). 
However, many integer computations must deal with 
several integer formats, which forbid the compiler to use 
SIMD instructions. Using “intrinsics” or assembly 
language is tiresome and time consuming or even 
impossible with integer formats. In this introduction, we 
discuss the motivation for introducing 16-bit floating 
point operations and instructions in general purpose 
microprocessors. 

 
1.1 16-bit floating point formats 

 
16-bit floating formats have been defined for some 

DSP processors, but rarely used. Recently, a 16-bit 
floating point format has been introduced in the 
OpenEXP format [1] and in the Cg language [2] defined 
by NVIDIA. This format, called “half”, is presented in 
figure 1. A number is interpreted exactly as in the other 
IEEE FP formats. The exponent is biased with an excess 

value of 15. Value 0 is reserved for the representation of 
0 (Fraction =0) and of the denormalized numbers 
(Fraction ≠ 0). Value 31 is reserved for representing 
infinite (Fraction = 0) and NaN (Fraction ≠ 0). For 
0<E<31, the general equation for calculating the value in 
a floating point number is (-1)S x (1.fraction) x 2(Exponent 

field-15). The range of the format extends from 2-24 = 6 x 10-

8 and (216-25) = 65504. In the remaining part of this paper, 
the 16-bit floating point format will be called half or F16. 
The “half” FP format is justified both by ILM, which 
developed the OpenEXP graphics format, and NVidia as 
a trade-off between precision, dynamic range and storage 
cost.  

S Exponent Fraction
1 5 10
S Exponent Fraction
1 5 10

 
Figure 1: NVIDIA “half” format 

 
1.2 Data format for image and media processing 

 
Image processing generally need both integer and FP 

formats. For instance, vImage [3], which is the Apple 
image processing framework, proposes four image types 
with four pixel types: the first two pixel types are 
unsigned byte (0 to 255) and float (0.0 to 1.0) for one 
color or alpha value and the two other pixel types are a 
set of four unsigned char or float values for Alpha, Red, 
Green and Blue. Convolution operations with byte inputs 
need 32-bit integer formats for the intermediary results. 
Geometric operations need floating point formats. In 
many cases, using the “half” format would be a good 
trade-off: the precision and dynamic range of 32-bit FP 
numbers is not always needed and 16-bit FP 
computations are compatible with byte storage if efficient 
byte to/from half format is available. As input and output 
operands of floating point operations have the same 
format, the floating point computation has another 
potential advantage with SIMD instructions: it is far 
easier for the compiler to vectorize. 

For media processing, the debate between integer and 
FP computing is also open. In [4], G. Kolly justifies 
“using Fixed-Point Instead of Floating Point for Better 
3D Performance” in the Intel Graphics Performance 
Primitives library. Techniques for automatic floating-



point to fixed-point conversions for DSP code 
generations have been presented [5]. On the other hand, 
people propose lightweight floating point arithmetic to 
enable FP signal processing applications in low-power 
mobile applications [6]. Using IDCT as benchmark, the 
authors show that FP numbers with 5-bit exponent and 8-
bit mantissa are sufficient to get a Peak-Signal-to-Noise-
Ratio similar to the PSNR with 32-bit FP numbers. These 
results illustrate one case for which the “half” format is 
adequate. If this debate first concerns the embedded 
applications, it is worth considering the interest of the 
“half” format for general purpose microprocessor as an 
extension for the SIMD instructions. 

With the same SIMD register set of the currently 
available SIMD extensions, using SIMD F16 instructions 
doubles the number of parallel operations compared to 
SIMD 32-bit integer or FP instructions or provide the 
same number of parallel operations as the SIMD 16-bit 
integer instructions but with a larger dynamic range. 

 
1.3 Integer, FP and compiler use of SIMD 
instructions 

 
The choice between integer or FP data doesn’t only 

depend on dynamic range and accuracy of computed 
values. As a matter of fact, using SIMD instructions and 
optimizing data accesses to improve cache performance 
are the two principal techniques that a programmer and/or 
a compiler can use to significantly reduce execution time. 
Compiler capabilities to vectorize is a key issue to 
improve performance. Presently, automatic compiler 
vectorization impact is generally disappointing even if 
compiler techniques improve steadily. One reason is that 
integer and FP instructions don’t have the same features 
for compiler vectorization. Integer arithmetic operations 
have different input and output formats: adding two N-bit 
numbers provide an N+1-bit number while multiplying 
two N-bits numbers provide a 2N-bit number. This 
property leads to specific characteristics in the SIMD 
extensions. Saturating arithmetic (by definition) and 2’s 
complement arithmetic discard carry outputs and cannot 
be used for arithmetic operations for which output 
dynamic range is greater than the input one. SIMD 
multiplications generally provide either the lower part or 
the higher part of the 2N-bit result for N-bit inputs. In IA-
32 SIMD extension, the only instruction to get round the 
issue is the multiplication-add instruction (PMADDWD) 
that multiplies 4 or 8 signed short integers to deliver 32-
bit intermediate results and horizontally adds two partial 
products to deliver 2 or 4 32-bit results (when using 64-
bit or 128-bit SIMD registers). It is a specific exception 
with different input and output formats. A compiler can 
hardly find the opportunity to use such an instruction, 
which has obviously been defined for the dot product of 
16-bit vectors widely used in signal processing. Such 

instructions are ad-hoc ones. The PSABDW instruction is 
the most famous example. Computing the sum of absolute 
values of differences between adjacent bytes, its only use 
is for motion estimation for which it has been defined. On 
the other hand, FP SIMD instructions have the same input 
and output formats and can be easily used by compilers. 
To optimize portable programs (without using assembly 
language or intrinsics), FP formats exhibit a significant 
advantage. 

 
1.4 Organization of this presentation 

 
In this paper, we only focus on the performance 

evaluation of the 16-bit FP operations and the 
vectorization issues. We don’t discuss the precision and 
dynamic range issues for graphics and media applications, 
which are the programmer’s responsibility. We will show 
that the proposed F16 format has performance close to the 
performance of the SIMD 16-bit integer version (whether 
this version has or not enough dynamic range) and more 
or less than two times the performance of the 32-bit FP 
version because the number of SIMD operations is double 
and of the smaller cache footprint. The second 
characteristic is the easy vectorization, which is similar to 
“float” or “double” compiler vectorization while different 
integer formats generally prevent any vectorization. 

After this introduction motivating the introduction of 
16-bit FP operations, section II presents the methodology 
that has been used including the benchmarks and the 
technique to “simulate” the execution of 16-bit FP 
operations on general purpose microprocessors and 
measure the execution time of the benchmarks. Section 
III presents the microarchitectural assumptions and the 
defined 16-bit operations on a Pentium 4 and on a 
PowerPC G5. Section IV presents the performance 
evaluation for the different benchmarks both for the 
Pentium 4 and the Power PC G5. Section V presents a 
preliminary evaluation of the chip area for the 16-bit FP 
operators compared to the actual chip area of the 64-bit 
FP operators used in general purpose microprocessors. 

 
2. Methodology 

 
In this section, we describe the benchmarks and the 

simulation methodology that have been used.  
 

2.1. Description of benchmarks 
 
For image processing, we first consider convolution 

operators: the horizontal and horizontal-vertical versions 
of Deriche filters [7] and a gradient: these filters operate 
on 2D arrays of pixels (unsigned char), do some 
computation by using integers and deliver byte (or 
integer) results. They are representative of spatial filters 



and have a relatively high computation to memory 
accesses ratio. The two next benchmarks are variants of 
scan algorithms. Given an associative operator o, and a 
vector v(x), the scan operation returns a vector w(x) such 
as w(x) = v (0) o v (1) o … o v(x). For example, the 
+scan returns for every pixel the 2D accumulation of the 
“previous” pixels of an image. The first benchmark 
implements a 2D accumulation and focuses on memory 
bandwidth limitation; the second one is based on a new 
segmentation algorithm proposed by Mérigot [8]. The 
classical image segmentation algorithm uses a quad tree 
computation based on the region’s average and the 
variance (split and merge algorithm) [9]. Mérigot uses a 
+*scan operation to optimize both the speed and the 
quality of the segmentation. This +*scan operator 
accumulates the sum and the sum of the squares of the 
pixel area. These two last benchmarks have a lower 
computation to memory access ratio than our first set of 
benchmarks. For intermediate results, they need a 
dynamic range that implies floating point data.  

For media processing, we consider the OpenGL data 
stream case study presented by Intel in [10]. The 
benchmark considers an OpenGL stream of triangles and 
computes the smallest box that bounds each triangle. We 
only considered the stream for which the triangle data are 
arranged in a tri-strip format (Figure 2) where the starting 
triangle is represented with all three vertices, but for each 
additional triangle that shares an edge with the triangle, 
only the third new vertex is stored (for N triangles, N+2 
vertices are stored). Intel original assembly code has been 
converted into “intrinsics” code for the reference version 
to compare to the F16 version. 

The code for all the benchmarks is provided in [11]. 
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Figure 2: Triangle in tri-strip format 

 
2.2. Simulation technique 

 
Instead of using a software simulator, we have used a 

“hardware” one by measuring the execution time of the 
simulated instructions on actual hardware (Pentium 4 
/PowerPC G5) for which the instructions are defined. The 
graphics and media benchmarks that we use have a nice 
specificity: the kernel computation consists in loop nests 
which are not data dependant (the loop iterations only 
depend on the loop bounds that are defined at compile 

time). In this situation, the “simulated” instructions can be 
replaced by any “actual” instruction with given latency 
and throughput figures. There are basically three 
constraints: a) the cache accesses should be the same for 
the simulated and actual memory instructions. b) The data 
dependencies should be strictly enforced. c) As it is no 
longer possible to check the results, we must carefully 
check that the compiler generates all the required 
instructions according to the data dependencies. With a 
Pentium 4, the SIMD MULPS (packed floating point 
multiplication) can be used to simulate a MULF16 
(packed half multiplication with the same latency (6 
cycles) and throughput (2 cycles). The drawback of this 
technique is that there is less degrees of freedom to 
choose latency and throughput values than with a 
software simulator. But one can easily argue that these 
values, corresponding to the actual values of the Pentium 
4 instructions are more realistic of VLSI technical 
constraints than the values generally assumed in software 
simulators. By using the same latency and throughput 
figures for F16 instructions as the Pentium 4 single (and 
double) precision ones, we get an upper bound of the 
execution time for the F16 instructions. Using realistic 
lower latency figures for the F16 instructions give a good 
insight of possible improved results. The situation is the 
same for the Altivec instructions of the PowerPC. 

 
2.3. Measures 

 
For each benchmark, the execution time has been 

measured at least 10 times and we have taken the 
averaged value. For the Pentium 4, we have used a 2.4 
GHz processor with 768 MB memory running Windows 
2000. We have used the Intel C++ 8 compiler The QxW 
option generates specialized code for the Pentium 4. The 
execution time has been measured with the RDTSC (read-
time stamp counter) instruction available with IA-32. All 
the measures have been done with only one running 
application (Visual C++). For the PowerPC, we have used 
a 1.6 GHz PowerPC G5 with 768 MB DDR400 running 
Mac OS X.3. The programs have been compiled with the 
Xcode programming environment including gcc 3.3.  

For all the image benchmarks, the results are presented 
as the number of cycles per pixel (CPP) which is the 
execution time of the overall benchmark divided by the 
number of pixels. For the OpenGL stream case study, the 
results are presented as the number of cycles per triangle.. 
For all image benchmarks, we have followed the same 
approach. First, the naïve integer version has been 
transformed into an optimized integer SIMD version 
when this version can be implemented. Otherwise, it has 
been transformed into a float version for which each pixel 
is represented by a float. Then we have written another 
float version with Intel intrinsics which performance is 



equivalent or better than the compiler version. The SIMD 
integer or float versions with intrinsics have then been 
converted into a F16 version that operates on 16-bit FP 
data after conversion from the original byte array layout. 
This version is compared with the best optimized SIMD 
integer version and the best SIMD float version. 

 
3. ISA and microarchitectural assumptions 

 
As the reference processor, we considered the 

presently available version of the Pentium 4 As the MMX 
instructions are somewhat special by sharing the MMX 
registers with the x87 FP instructions, we only considered 
the XMM register set with 128-bit integer and SP FP 
instructions.  

We assume the currently available 128-bit XMM 
register set. Extending to 256 bits would be a dramatic 
change on many aspects of the architecture: data cache 
access, doubling the number of functional units for all the 
SIMD operations, etc. With 128-bit registers and data 
path, the number of functional units for each SIMD F16 
operation is 8. The issues to solve are: the conversions 
between bytes to/from F16 data, the type of FP operators 
and the permutation and formatting operations that must 
be added for the F16 format. 

Byte to F16 conversion means converting 8 packed 
bytes into 8 packed F16 “half”. IA32 ISA having a (2,1) 
instruction format, the source operand can be either a 
register or a memory operand. One could define a 
conversion from a 64-bit memory operand (or the lower 
part of an XMM register) into an XMM register. The 
other option consists in defining two different byte-to-
F16 conversion instructions. After loading the XMM 
register with a 16-byte memory access, the first 
conversion instruction would convert the lower part of the 
XMM register into 8 packed F16 in another register and 
the second one would convert the higher part. This 
second conversion instruction is not absolutely necessary, 
but avoids an intermediate move/shift from the upper part 
to the lower part of the source register. These conversion 
instructions are register only instructions. The opposite 
F16 to byte conversion are needed. The second option 
looks more efficient. It implicitly unrolls two times any 
loop (the lower 8-byte operands first, then the higher 
ones). It avoids the alignment issues when dealing with 
byte accesses such as X[i][j] and X[i][j+1] which are 
easier to treat within the XMM registers. 

To deal with the complete F16 format, the FP 
operators that are needed are the same as the ones that are 
available for single and double precision formats: the 
packed F16 addition/subtraction, multiplication, division 
and square root operators. Bitwise logical operations are 
the same for F16 formats as for any other format. Shuffle 
and pack/unpack instructions can be more efficiently 
executed on the original byte data before conversion for 

byte stored arrays, but they are needed for “half” stored 
arrays. When F16 data are stored, all the shuffle or 
packing/unpacking instructions that are now available for 
16-bit data can be used but these operations should be 
extended to the 8 different slots, which raise a small 
difficulty. The shuffle or packing/unpacking operations 
are defined by an 8-bit immediate in the IA-32 ISA, 
which is OK with four slots as each couple of bits 
controlling one out of four slots. Keeping an 8-bit 
immediate with eight slots would need a coding of the 
different operations on the eight slots.  

Table 1: 16-bit FP instructions for Pentium 4 

INSTRUC
TION 

LATEN
CY  

MEANING 

ADDF16 4 Xmmd <- Xmmd+Xmms 

SUBF16 4 Xmmd <- Xmmd-Xmms 

MULF16 6 Xmmd <- Xmmd * Xmms 

MAXF16 4 Xmmd <- Xmmd max Xmms 

MINF16 4 Xmmd <= Xmmd min Xmms 

CBL2F16 4 Xmmd <=I8toF16 (Xmms low) 

CBH2F16 4 Xmmd<= I8toF16 (Xmms high) 

CF162BL 4 Xmmd low<= F16toI8 (Xmms) 

CF162BH 4 Xmmd high<= F16toI8(Xmms) 

SHUFF16 4 Xmmd <= shuffle (8 slots) Xmms

 
Table 1 lists the different F16 IA-32 instructions that 

we used in our benchmarks. All the proposed instructions 
have a throughput value of 2. Short from/to half 
conversions are also needed. Load and store packed 
instructions for half data are similar to the already packed 
integer instructions. 

Table 2: G5 instruction latencies 

Execution Unit: cycles 

IU (+, -, logical, shift) 2-3 

IU (multiplication) 5-7 

FPU (+, -, *, MAF) 6 

LSU (L1 hit) to GPR, FPR, VR 3,5,4-5 

LSU (L2 hit, loads only) 11 

VPERM 2 

VSIU (part of VALU) 2 



VCIU (part of VALU) 5 

VFPU (part of VALU) 8 

We also considered the presently available G5 
processor with Altivec extension and the instruction 
latencies [12] given in Table 2. As the Altivec extension 
is rather complete, we only need to add the vector F16 
instructions and the byte to/from F16 conversion 
instructions. All the packing/unpacking and permutation 
instructions are already available for short integer 
operands. The simulated conversion instructions have a 
latency of 2, which may be a little bit optimistic. The F16 
multiplication-accumulation instruction, which is used for 
F16 add, mul and mul-add, has a latency of 5. Compared 
to our Pentium 4 simulation of F16 instructions that are 
pessimistic, our G5 simulation are slightly optimistic. 

 
4. Measured results 

 
4.1. Deriche benchmarks 

 
Both the horizontal (H) and horizontal-vertical (HV) 

versions of Deriche filters and the Deriche gradient can 
use one or two arrays. In the first case, the original array 
is replaced by the final array. The results presented in 
Table 3 for the Pentium 4 and Table 4 for the PowerPC 
G5 correspond to only one array. 

Both tables give the best scalar and the best SIMD 
versions for 16-bit integer and 32-bit FP formats together 
with the F16 version. The crossed out values correspond 
to integer versions for which it is necessary to first check 
the coefficient values to avoid overflow (as detailed 
below for Deriche filters) or for which overflow can 
occur (gradient). F16 versions assume the instructions 
latencies previously defined in Tables 1 and 2. 

The horizontal filter exhibits a loop-carried 
dependency. The best integer scalar version unrolls 3 
times the inner loop and 2 times the outer loop. The best 
float scalar version unrolls 4 times the outer loop. There 
are two obstacles to manual vectorization with intrinsics: 
first the loop-carried dependency and second the dynamic 
range of the results when multiplying pixels by b0, a0 and 
a1 coefficients. The loop-carried dependency is 
suppressed by transposing the initial array before 
applying the filter and transposing back the resulting 
array. A 16 x 16 byte block transposition can be 
implemented with SIMD unpack instructions. To reduce 
the cache misses, we transpose a horizontal tile of 16 x 16 
byte blocks into a vertical tile of 16 x 16 byte blocks, 
apply the filter on this vertical buffer and transpose back 
the resulting column into the initial horizontal tile. 
Vectorizing the multiplications is possible if coefficient 
values are known. If all coefficients values are less than 
256, then multiplying a coefficient by a pixel value fits in 

a 16-bit value and using the Pentium 4 SIMD 
multiplication on 16-bit inputs and the lower 16-bit of the 
32-bit output is OK. As it turns out that 2 coefficients are 
positive while the third one is negative, the inner loop can 
be implemented as a subtraction followed by an addition 
to avoid any overflow. If one coefficient is greater than 
256, the expression computed in the inner loop can be 
transformed to become similar to the previous case. For 
instance, if 256 <b0 < 512, then b0 * X[i][j] >> 8 = 
X[i][j] + (b0 – 256) b0 * X[i][j] >> 8 and the 
multiplication of the pixel value by b0 – 256 is similar to 
the previously described case, and so on. We only give 
these details to outline that using SIMD integer 
instructions generally needs a detailed knowledge of the 
application including the dynamic range of the different 
coefficients. With 16-bit or 32-bit FP values, after the 
horizontal tile to vertical tile transposition, the inner loop 
easily vectorizes. 

 

Table 3: Execution time (CPP) on a 512x512 
image on a Pentium 4 

Benchmark Scalar 
integer 

Scalar 
F32 

SIMD 
integer 

SIMD 
F32 

F16 

Deriche H 35.5 30 9.1 19.7 9.3 

Deriche 
HV 

33.3 17 6.1 16.9 7 

Gradient 17 11 4.1 6.8 3.5/5.3 

 

Table 4: Execution time (CPP) on a 512x512 
image on a PowerPC G5 

Benchmark Scalar 
integer 

Scalar 
F32 

SIMD 
integer 

SIMD 
F32 

F16 

Deriche H 27.7 10.3 4.2 13.8 5 

Deriche HV 25 23 2.2 11.1 2.6 

Gradient 17.6 73.6 2.4 5.7 2.5 

 
For the two processors, the 16-bit integer or FP 

versions for filters and gradient outperform the 32-bit 
scalar integer and FP versions. The 16-bit integer and FP 
versions have similar performance, as memory accesses 
are the same and the conversions are similar (byte to short 
by unpacking with zero expansion, byte to F16 by actual 
conversion). The performance differences come from the 
difference in integer or F16 operation latencies.  

 For the Pentium, the F16 version is slightly slower 
than the 16-bit integer version as the additions (latency of 
4 for F16 versus 2 for int16) are more frequent than the 
multiplications (latency of 6 for F16 versus 8 for int16). 



However, the integer versions are specific and depend on 
the coefficient values when the F16 version is generic. 
The F16 versions exhibit a speed-up close to 2 versus the 
float versions for two reasons: there are 8 operations per 
instruction instead of 4, and storing byte instead of float 
reduces the cache footprint. There are two values for the 
F16 version in Table 3: the first one supposes one specific 
FABS16 instruction to compute the absolute value while 
the second one has not this instruction that doesn’t exist 
in the IA-32 SIMD float instructions. 

For the G5 processor, the speed-up between F16 and 
32-bit FP versions ranges from 2.2 to 4.2. It comes from 
the number of operations per instruction, the cache 
footprint plus smaller latency values (F16 arithmetic 
operations have a latency of 5 instead of 8 and the latency 
of conversion instructions is 2, which is less than the 
latency of integer to float conversion for the G5 
processor). 

The best scalar version of the horizontal-vertical 
Deriche filter unrolls two times the inner loop. This filter 
has no dependency, but the same coefficient problems as 
the horizontal one. The only difference between the 
horizontal filter and the horizontal vertical execution 
times comes from the transposition execution times.  

 
4.2. Scan benchmarks 

 
We now consider the performance for the scan 

benchmarks that have a lower computation to memory 
access ratio than the previous benchmarks: the +scan has 
two additions for three memory accesses. Because of the 
accumulation, the accumulator must be large enough to 
avoid any overflow. 32-bit integers or floats are typically 
used for large images and 16-bit integer for small images. 
For the +*scan, the 32-bit integer format has not enough 
range: a 234 range is needed for a 512x512 image and a 
236 one for a 1024x1024 image. Either the half or the float 
format is needed. The outputs can be stored in two 
separated matrices of floats, or interleaved in a single 
matrix. The F16 version was simulated from an integer 
short version and adding extra code for square 
computations and accumulations. The +scan (horizontal 
add) within a 128-bit register was implemented with 3 
couples of addition/shift instructions.  

The results for copy, +scan and +* scan are given in 
Table 5 for the Pentium 4 and in Table 6 for the PowerPC 
G5. The crossed out values correspond to versions for 
which the dynamic range is insufficient to get correct 
results. 

It turns out that the +scan has performance that is close 
to the performance of the copy benchmark, which mean 
that the +scan is clearly memory-bounded. It is quite 
obvious in that situation that using FP formats cannot 
bring any advantage and that simply using integer formats 
is the best solution.  

For the +* scan, the F16 version on the Pentium 4 has 
a speed-up slightly less than 2, which is easily explained 
by the same reasons as previously. The best 32-bit integer 
version, which has not enough range, would run at 12.1 
CPP versus 7.5 for the F16 version. We outline that the 
SIMD instructions are not suitable to implement the + 
scan and +* scan operations as each result correspond to 
the sum (or sum of squares) of all the previous results: 
this typical recurrence situation prevents automatic 
vectorization. A significant number of SIMD instructions 
are needed to accumulate the previous sums into a SIMD 
register. With the Pentium 4, the SIMD version is always 
slower than the scalar one. Only the F16 version is faster 
than the scalar 32-bit FP version. The F16 version of +* 
scan has 1.3 times the execution time of the fastest copy 
with 16-bit integers, which is the lower bound. The 
overhead comes from the bookkeeping instructions and 
the significant number of copy instructions that results 
from the two-operand format of IA-32 ISA (when 
destination operand must be preserved, it should first be 
copied into another operand). Going further to improve 
performance means improving the memory bandwidth 
and/or reducing the instruction overhead for loop nests, as 
suggested by the MediaBreeze architecture [19]. 

Table 5: Execution time (CPP) for the +*scan 
on a 512 x 512 image on a Pentium 4 

Data 
formats 

I8-
I16 

I8-
I16 

I8-
F32 

F32-
F32 

I8–
F16 

Scalar 
Copy 

4.9 9.4 9.5 13.6   

SIMD 
Copy 

4.7 9.2 9.4 12.5   

Scalar 
+scan 

5.6 9.6 10 15.3   

SIMD 
+scan 

7.2 10.
5 

10.6 17.5 7.8 

Scalar 
+*scan 

  18.
8 

19 17   

SIMD 
+*scan 

9.9 18.
7 

18.7 21.3 10.5 

Table 6 : Execution time (CPP) of the +scan for 
a 512 x 512 image on a PowerPC G5 

Data 
formats 

I8-
I16 

I8-
I16 

I8-
F32 

F32-
F32 

I8–
F16 

Scalar 
Copy 

5.5 9.3 62.4 10.4   

SIMD 
Copy 

4.5 6.7 7 7.6   

Scalar 
+scan 

24.3 10.
4 

95 18   



SIMD 
+scan 

5.1 7 7.7 15 5.1 

Scalar 
+*scan 

  17.
7 

26.7 18.5   

SIMD 
+*scan 

7.8 13 15 15.8 7.8 

With the G5, F16 delivers a 1.5 speed-up versus the 
32-bit FP format and 1.4 versus the 32-bit integer format 
for the +scan. For the +*scan, the speed-up is 1.9 versus 
the 32-bit FP format. Opposed to the Pentium 4, the 
SIMD versions are better than the scalar ones. As the 
Altivec extension is far more complete than the 
SSE/SSE2 extension, it is far easier to manually vectorize 
the scan benchmarks, which leads to better performance. 

 
4.3. OpenGL benchmark 
 
For the OpenGL stream case study, the reference 

version has vertices with float coordinates and stores each 
bounded box coordinates as 3 10-bit values packed into a 
32-bit integer. The Pentium 4 execution time of the 
function is 195 cycles per triangle, which correspond to 
CPI=7. The F16 version has vertices with F16 
coordinates and store each bounded-box coordinates as a 
64 word (3 x F16 + padding). The execution time is 107.5 
cycles per triangle and the CPI is 5. The speed-up is 1.8 
and results from the eight parallel operations per SIMD 
instruction.  

The PowerPC G5 execution time of the original 
version is 21.5 cycles per triangle versus 10.5 cycles per 
triangle for the F16 version. The speed-up (2.0) is close to 
the Pentium speed-up, but the G5 uses 9 times less cycles 
because it uses half the number of instructions of the 
Pentium to transform the initial input data structure into a 
structure suitable for SIMD operations and because the 
CPI is better (For the initial 32-bit FP version, the G5 CPI 
equals 1.6 versus 7 for the Pentium 4). Although, the 
overall result is very different because of the difference in 
the ISA extensions, the relative performance between F16 
and 32-bit FP versions are very similar. 

 
6. Chip area evaluation of F16 functional units 

 
Only a VLSI implementation in the framework of the 

actual microprocessor (Pentium 4 or G5) could provide 
significant figures to estimate the area, power and timing 
features of the 16-bit floating point functional units. To 
get a rough preliminary approximation, we used VHDL 
models of floating point operators and a 0.18 µm cell-
based library from ST (HCMOS8D technology). The 
same approach has been used by Talla et al [13] to 
evaluate the hardware cost of the MediaBreeze 
architecture. The VHDL models have been developed by 

J. Detrey and F. De Dinechin [14]: they include non 
pipelined and pipelined versions for the addition, the 
multiplication, the division and the square root operation. 
The adder uses a close path when the exponent values are 
close and a far path when their difference is large. The 
divider uses a radix-4 SRT algorithm while the square 
root operator uses a radix-2 SRT algorithm. In Table 7, 
we show the chip area of the different operators that is 
estimated by the Cadence 4.4.3 synthesis tool before 
placement and routing. For eight such 16-bit FP 
functional units, the chip area would be less than 11% 
than the chip area for the four 64-bit FP functional units 
that are implemented in the general purpose 
microprocessors (we assumed that the same FP units are 
used both for single and double precision FP numbers, as 
the corresponding instructions have the same latency). In 
our evaluation, the 16-bit FP adder is rather large 
compared to the other 16-bit operators. The dual path 
approach that gives the best results for 64-bit addition is 
probably unnecessary for 16-bit addition. A smaller 16-
bit FP adder with a straightforward approach could be 
used as mentioned in [6]. 

 

Table 7: Estimation of chip area (mm2) for non 
pipelined FP operators in a 0.18µm CMOS 

technology 

Op. Add. Mul. Div. Sqrt Overall 
16-bit 0.019 0.016 0.047 0.027 0,110 
64-bit 0.097 0.276 1.008 0.679 2,059 
Ratio 19.90% 5.91% 4.64% 4.04% 5.33% 

 
7. Concluding remarks 

 
For graphics applications on CPUs and GPUs, there is 

a common trade-off between precision and dynamic range 
on one hand and cost of storage on the other hand. Many 
graphics applications have better performance with 
floating point formats than with integer ones. One reason 
is that using FP formats make easier compiler or manual 
vectorization as FP operations have the same input and 
output formats. However, the single precision floating 
point format uses four times more memory as a byte 
format. When it provides enough precision and dynamic 
range, the 16-bit floating point format defined by ILM for 
the OpenEXP format and NVIDIA seems a good trade-
off.  

In this paper, we have considered a limited set of 16-
bit FP operations and a set of conversion instructions 
between byte and 16-bit FP format for two common 
general purpose microprocessors. We have measured the 
execution time of different versions of typical graphics 
benchmarks (Deriche filters, Gradient, scan) with integer, 



float and “half” formats. For this last format, we have 
simulated the “half” instructions by using actual Pentium 
4 or PowerPC G5 instructions having the same latency 
and throughput as the simulated instructions. For the 
compute bounded benchmarks that can be vectorized, the 
speed-up is greater or less than 2 (but close to 2) 
compared to the best “float” version. For the +*scan that 
needs floating point formats, the speed-up is greater than 
2.  

A very preliminary evaluation of the chip area shows 
that for eight 16-bit FP functional units, the chip area 
should not exceed 11% of the chip area currently devoted 
to the FP functional units in a Pentium 4 or a G5. 

This work will be completed by considering a more 
significant lot of graphics and media applications. For 
graphics or media applications that are compute-bounded, 
F16 speed-up is close to 2 versus 32-bit FP versions. For 
graphics applications with byte stored pixels, the F16 
versions have performance close to 16-bit integer 
versions, but have two significant advantages: compiler 
vectorization is greatly facilitated and the dynamic range 
is larger for intermediate results. Even when significant 
differences between the two considered SIMD extensions 
(SSE/SSE2 and Altivec) can lead to significant 
differences in performance figures (clock cycles per 
pixel), the performance gain between F16 and 32-bit FP 
versions are consistent for the two processors for all the 
benchmarks. 
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