
16-bit FP sub-word parallelism to facilitate compiler vectorization and improve
performance of image and media processing

Daniel Etiemble *, Lionel Lacassagne**

*LRI, ** IEF, University of Paris Sud
91405 Orsay, France

{ de@lri.fr , lionel.lacassagne@ief.u-psud.fr }

Abstract

We consider the implementation of 16-bit floating

point instructions on a Pentium 4 and a PowerPC G5 for
image and media processing. By measuring the execution
time of benchmarks with these new simulated
instructions, we show that significant speed-up is
obtained compared to 32-bit FP versions. For image
processing, the speed-up both comes from doubling the
number of operations per SIMD instruction and the better
cache behavior with byte storage. For data stream
processing with arrays of structures, the speed-up mainly
comes from the wider SIMD instructions..

1. Introduction

Graphics and media applications have become the

dominant ones for general purpose microprocessors and
have led to the introduction of specific instruction set
extensions such as the SIMD multimedia extensions now
available in most ISAs. Graphics and media applications
either use integer or FP computation. While some
applications need the dynamic range and accuracy of 32-
bit FP numbers, a general trends is to replace FP by
integer computations for better performance when
hardware resources are limited (embedded applications).
However, many integer computations must deal with
several integer formats, which forbid the compiler to use
SIMD instructions. Using “intrinsics” or assembly
language is tiresome and time consuming or even
impossible with integer formats. In this introduction, we
discuss the motivation for introducing 16-bit floating
point operations and instructions in general purpose
microprocessors.

1.1 16-bit floating point formats

16-bit floating formats have been defined for some

DSP processors, but rarely used. Recently, a 16-bit
floating point format has been introduced in the
OpenEXP format [1] and in the Cg language [2] defined
by NVIDIA. This format, called “half”, is presented in
figure 1. A number is interpreted exactly as in the other
IEEE FP formats. The exponent is biased with an excess

value of 15. Value 0 is reserved for the representation of
0 (Fraction =0) and of the denormalized numbers
(Fraction ≠ 0). Value 31 is reserved for representing
infinite (Fraction = 0) and NaN (Fraction ≠ 0). For
0<E<31, the general equation for calculating the value in
a floating point number is (-1)S x (1.fraction) x 2(Exponent

field-15). The range of the format extends from 2-24 = 6 x 10-

8 and (216-25) = 65504. In the remaining part of this paper,
the 16-bit floating point format will be called half or F16.
The “half” FP format is justified both by ILM, which
developed the OpenEXP graphics format, and NVidia as
a trade-off between precision, dynamic range and storage
cost.

S Exponent Fraction
1 5 10
S Exponent Fraction
1 5 10

Figure 1: NVIDIA “half” format

1.2 Data format for image and media processing

Image processing generally need both integer and FP

formats. For instance, vImage [3], which is the Apple
image processing framework, proposes four image types
with four pixel types: the first two pixel types are
unsigned byte (0 to 255) and float (0.0 to 1.0) for one
color or alpha value and the two other pixel types are a
set of four unsigned char or float values for Alpha, Red,
Green and Blue. Convolution operations with byte inputs
need 32-bit integer formats for the intermediary results.
Geometric operations need floating point formats. In
many cases, using the “half” format would be a good
trade-off: the precision and dynamic range of 32-bit FP
numbers is not always needed and 16-bit FP
computations are compatible with byte storage if efficient
byte to/from half format is available. As input and output
operands of floating point operations have the same
format, the floating point computation has another
potential advantage with SIMD instructions: it is far
easier for the compiler to vectorize.

For media processing, the debate between integer and
FP computing is also open. In [4], G. Kolly justifies
“using Fixed-Point Instead of Floating Point for Better
3D Performance” in the Intel Graphics Performance
Primitives library. Techniques for automatic floating-

point to fixed-point conversions for DSP code
generations have been presented [5]. On the other hand,
people propose lightweight floating point arithmetic to
enable FP signal processing applications in low-power
mobile applications [6]. Using IDCT as benchmark, the
authors show that FP numbers with 5-bit exponent and 8-
bit mantissa are sufficient to get a Peak-Signal-to-Noise-
Ratio similar to the PSNR with 32-bit FP numbers. These
results illustrate one case for which the “half” format is
adequate. If this debate first concerns the embedded
applications, it is worth considering the interest of the
“half” format for general purpose microprocessor as an
extension for the SIMD instructions.

With the same SIMD register set of the currently
available SIMD extensions, using SIMD F16 instructions
doubles the number of parallel operations compared to
SIMD 32-bit integer or FP instructions or provide the
same number of parallel operations as the SIMD 16-bit
integer instructions but with a larger dynamic range.

1.3 Integer, FP and compiler use of SIMD
instructions

The choice between integer or FP data doesn’t only

depend on dynamic range and accuracy of computed
values. As a matter of fact, using SIMD instructions and
optimizing data accesses to improve cache performance
are the two principal techniques that a programmer and/or
a compiler can use to significantly reduce execution time.
Compiler capabilities to vectorize is a key issue to
improve performance. Presently, automatic compiler
vectorization impact is generally disappointing even if
compiler techniques improve steadily. One reason is that
integer and FP instructions don’t have the same features
for compiler vectorization. Integer arithmetic operations
have different input and output formats: adding two N-bit
numbers provide an N+1-bit number while multiplying
two N-bits numbers provide a 2N-bit number. This
property leads to specific characteristics in the SIMD
extensions. Saturating arithmetic (by definition) and 2’s
complement arithmetic discard carry outputs and cannot
be used for arithmetic operations for which output
dynamic range is greater than the input one. SIMD
multiplications generally provide either the lower part or
the higher part of the 2N-bit result for N-bit inputs. In IA-
32 SIMD extension, the only instruction to get round the
issue is the multiplication-add instruction (PMADDWD)
that multiplies 4 or 8 signed short integers to deliver 32-
bit intermediate results and horizontally adds two partial
products to deliver 2 or 4 32-bit results (when using 64-
bit or 128-bit SIMD registers). It is a specific exception
with different input and output formats. A compiler can
hardly find the opportunity to use such an instruction,
which has obviously been defined for the dot product of
16-bit vectors widely used in signal processing. Such

instructions are ad-hoc ones. The PSABDW instruction is
the most famous example. Computing the sum of absolute
values of differences between adjacent bytes, its only use
is for motion estimation for which it has been defined. On
the other hand, FP SIMD instructions have the same input
and output formats and can be easily used by compilers.
To optimize portable programs (without using assembly
language or intrinsics), FP formats exhibit a significant
advantage.

1.4 Organization of this presentation

In this paper, we only focus on the performance

evaluation of the 16-bit FP operations and the
vectorization issues. We don’t discuss the precision and
dynamic range issues for graphics and media applications,
which are the programmer’s responsibility. We will show
that the proposed F16 format has performance close to the
performance of the SIMD 16-bit integer version (whether
this version has or not enough dynamic range) and more
or less than two times the performance of the 32-bit FP
version because the number of SIMD operations is double
and of the smaller cache footprint. The second
characteristic is the easy vectorization, which is similar to
“float” or “double” compiler vectorization while different
integer formats generally prevent any vectorization.

After this introduction motivating the introduction of
16-bit FP operations, section II presents the methodology
that has been used including the benchmarks and the
technique to “simulate” the execution of 16-bit FP
operations on general purpose microprocessors and
measure the execution time of the benchmarks. Section
III presents the microarchitectural assumptions and the
defined 16-bit operations on a Pentium 4 and on a
PowerPC G5. Section IV presents the performance
evaluation for the different benchmarks both for the
Pentium 4 and the Power PC G5. Section V presents a
preliminary evaluation of the chip area for the 16-bit FP
operators compared to the actual chip area of the 64-bit
FP operators used in general purpose microprocessors.

2. Methodology

In this section, we describe the benchmarks and the

simulation methodology that have been used.

2.1. Description of benchmarks

For image processing, we first consider convolution

operators: the horizontal and horizontal-vertical versions
of Deriche filters [7] and a gradient: these filters operate
on 2D arrays of pixels (unsigned char), do some
computation by using integers and deliver byte (or
integer) results. They are representative of spatial filters

and have a relatively high computation to memory
accesses ratio. The two next benchmarks are variants of
scan algorithms. Given an associative operator o, and a
vector v(x), the scan operation returns a vector w(x) such
as w(x) = v (0) o v (1) o … o v(x). For example, the
+scan returns for every pixel the 2D accumulation of the
“previous” pixels of an image. The first benchmark
implements a 2D accumulation and focuses on memory
bandwidth limitation; the second one is based on a new
segmentation algorithm proposed by Mérigot [8]. The
classical image segmentation algorithm uses a quad tree
computation based on the region’s average and the
variance (split and merge algorithm) [9]. Mérigot uses a
+*scan operation to optimize both the speed and the
quality of the segmentation. This +*scan operator
accumulates the sum and the sum of the squares of the
pixel area. These two last benchmarks have a lower
computation to memory access ratio than our first set of
benchmarks. For intermediate results, they need a
dynamic range that implies floating point data.

For media processing, we consider the OpenGL data
stream case study presented by Intel in [10]. The
benchmark considers an OpenGL stream of triangles and
computes the smallest box that bounds each triangle. We
only considered the stream for which the triangle data are
arranged in a tri-strip format (Figure 2) where the starting
triangle is represented with all three vertices, but for each
additional triangle that shares an edge with the triangle,
only the third new vertex is stored (for N triangles, N+2
vertices are stored). Intel original assembly code has been
converted into “intrinsics” code for the reference version
to compare to the F16 version.

The code for all the benchmarks is provided in [11].

M0

M7

M6

M5

M4

M3

M2

M1
M9

M8

T0 T7T6

T5
T4

T3
T2T1

Figure 2: Triangle in tri-strip format

2.2. Simulation technique

Instead of using a software simulator, we have used a

“hardware” one by measuring the execution time of the
simulated instructions on actual hardware (Pentium 4
/PowerPC G5) for which the instructions are defined. The
graphics and media benchmarks that we use have a nice
specificity: the kernel computation consists in loop nests
which are not data dependant (the loop iterations only
depend on the loop bounds that are defined at compile

time). In this situation, the “simulated” instructions can be
replaced by any “actual” instruction with given latency
and throughput figures. There are basically three
constraints: a) the cache accesses should be the same for
the simulated and actual memory instructions. b) The data
dependencies should be strictly enforced. c) As it is no
longer possible to check the results, we must carefully
check that the compiler generates all the required
instructions according to the data dependencies. With a
Pentium 4, the SIMD MULPS (packed floating point
multiplication) can be used to simulate a MULF16
(packed half multiplication with the same latency (6
cycles) and throughput (2 cycles). The drawback of this
technique is that there is less degrees of freedom to
choose latency and throughput values than with a
software simulator. But one can easily argue that these
values, corresponding to the actual values of the Pentium
4 instructions are more realistic of VLSI technical
constraints than the values generally assumed in software
simulators. By using the same latency and throughput
figures for F16 instructions as the Pentium 4 single (and
double) precision ones, we get an upper bound of the
execution time for the F16 instructions. Using realistic
lower latency figures for the F16 instructions give a good
insight of possible improved results. The situation is the
same for the Altivec instructions of the PowerPC.

2.3. Measures

For each benchmark, the execution time has been

measured at least 10 times and we have taken the
averaged value. For the Pentium 4, we have used a 2.4
GHz processor with 768 MB memory running Windows
2000. We have used the Intel C++ 8 compiler The QxW
option generates specialized code for the Pentium 4. The
execution time has been measured with the RDTSC (read-
time stamp counter) instruction available with IA-32. All
the measures have been done with only one running
application (Visual C++). For the PowerPC, we have used
a 1.6 GHz PowerPC G5 with 768 MB DDR400 running
Mac OS X.3. The programs have been compiled with the
Xcode programming environment including gcc 3.3.

For all the image benchmarks, the results are presented
as the number of cycles per pixel (CPP) which is the
execution time of the overall benchmark divided by the
number of pixels. For the OpenGL stream case study, the
results are presented as the number of cycles per triangle..
For all image benchmarks, we have followed the same
approach. First, the naïve integer version has been
transformed into an optimized integer SIMD version
when this version can be implemented. Otherwise, it has
been transformed into a float version for which each pixel
is represented by a float. Then we have written another
float version with Intel intrinsics which performance is

equivalent or better than the compiler version. The SIMD
integer or float versions with intrinsics have then been
converted into a F16 version that operates on 16-bit FP
data after conversion from the original byte array layout.
This version is compared with the best optimized SIMD
integer version and the best SIMD float version.

3. ISA and microarchitectural assumptions

As the reference processor, we considered the

presently available version of the Pentium 4 As the MMX
instructions are somewhat special by sharing the MMX
registers with the x87 FP instructions, we only considered
the XMM register set with 128-bit integer and SP FP
instructions.

We assume the currently available 128-bit XMM
register set. Extending to 256 bits would be a dramatic
change on many aspects of the architecture: data cache
access, doubling the number of functional units for all the
SIMD operations, etc. With 128-bit registers and data
path, the number of functional units for each SIMD F16
operation is 8. The issues to solve are: the conversions
between bytes to/from F16 data, the type of FP operators
and the permutation and formatting operations that must
be added for the F16 format.

Byte to F16 conversion means converting 8 packed
bytes into 8 packed F16 “half”. IA32 ISA having a (2,1)
instruction format, the source operand can be either a
register or a memory operand. One could define a
conversion from a 64-bit memory operand (or the lower
part of an XMM register) into an XMM register. The
other option consists in defining two different byte-to-
F16 conversion instructions. After loading the XMM
register with a 16-byte memory access, the first
conversion instruction would convert the lower part of the
XMM register into 8 packed F16 in another register and
the second one would convert the higher part. This
second conversion instruction is not absolutely necessary,
but avoids an intermediate move/shift from the upper part
to the lower part of the source register. These conversion
instructions are register only instructions. The opposite
F16 to byte conversion are needed. The second option
looks more efficient. It implicitly unrolls two times any
loop (the lower 8-byte operands first, then the higher
ones). It avoids the alignment issues when dealing with
byte accesses such as X[i][j] and X[i][j+1] which are
easier to treat within the XMM registers.

To deal with the complete F16 format, the FP
operators that are needed are the same as the ones that are
available for single and double precision formats: the
packed F16 addition/subtraction, multiplication, division
and square root operators. Bitwise logical operations are
the same for F16 formats as for any other format. Shuffle
and pack/unpack instructions can be more efficiently
executed on the original byte data before conversion for

byte stored arrays, but they are needed for “half” stored
arrays. When F16 data are stored, all the shuffle or
packing/unpacking instructions that are now available for
16-bit data can be used but these operations should be
extended to the 8 different slots, which raise a small
difficulty. The shuffle or packing/unpacking operations
are defined by an 8-bit immediate in the IA-32 ISA,
which is OK with four slots as each couple of bits
controlling one out of four slots. Keeping an 8-bit
immediate with eight slots would need a coding of the
different operations on the eight slots.

Table 1: 16-bit FP instructions for Pentium 4

INSTRUC
TION

LATEN
CY

MEANING

ADDF16 4 Xmmd <- Xmmd+Xmms

SUBF16 4 Xmmd <- Xmmd-Xmms

MULF16 6 Xmmd <- Xmmd * Xmms

MAXF16 4 Xmmd <- Xmmd max Xmms

MINF16 4 Xmmd <= Xmmd min Xmms

CBL2F16 4 Xmmd <=I8toF16 (Xmms low)

CBH2F16 4 Xmmd<= I8toF16 (Xmms high)

CF162BL 4 Xmmd low<= F16toI8 (Xmms)

CF162BH 4 Xmmd high<= F16toI8(Xmms)

SHUFF16 4 Xmmd <= shuffle (8 slots) Xmms

Table 1 lists the different F16 IA-32 instructions that

we used in our benchmarks. All the proposed instructions
have a throughput value of 2. Short from/to half
conversions are also needed. Load and store packed
instructions for half data are similar to the already packed
integer instructions.

Table 2: G5 instruction latencies

Execution Unit: cycles

IU (+, -, logical, shift) 2-3

IU (multiplication) 5-7

FPU (+, -, *, MAF) 6

LSU (L1 hit) to GPR, FPR, VR 3,5,4-5

LSU (L2 hit, loads only) 11

VPERM 2

VSIU (part of VALU) 2

VCIU (part of VALU) 5

VFPU (part of VALU) 8

We also considered the presently available G5
processor with Altivec extension and the instruction
latencies [12] given in Table 2. As the Altivec extension
is rather complete, we only need to add the vector F16
instructions and the byte to/from F16 conversion
instructions. All the packing/unpacking and permutation
instructions are already available for short integer
operands. The simulated conversion instructions have a
latency of 2, which may be a little bit optimistic. The F16
multiplication-accumulation instruction, which is used for
F16 add, mul and mul-add, has a latency of 5. Compared
to our Pentium 4 simulation of F16 instructions that are
pessimistic, our G5 simulation are slightly optimistic.

4. Measured results

4.1. Deriche benchmarks

Both the horizontal (H) and horizontal-vertical (HV)

versions of Deriche filters and the Deriche gradient can
use one or two arrays. In the first case, the original array
is replaced by the final array. The results presented in
Table 3 for the Pentium 4 and Table 4 for the PowerPC
G5 correspond to only one array.

Both tables give the best scalar and the best SIMD
versions for 16-bit integer and 32-bit FP formats together
with the F16 version. The crossed out values correspond
to integer versions for which it is necessary to first check
the coefficient values to avoid overflow (as detailed
below for Deriche filters) or for which overflow can
occur (gradient). F16 versions assume the instructions
latencies previously defined in Tables 1 and 2.

The horizontal filter exhibits a loop-carried
dependency. The best integer scalar version unrolls 3
times the inner loop and 2 times the outer loop. The best
float scalar version unrolls 4 times the outer loop. There
are two obstacles to manual vectorization with intrinsics:
first the loop-carried dependency and second the dynamic
range of the results when multiplying pixels by b0, a0 and
a1 coefficients. The loop-carried dependency is
suppressed by transposing the initial array before
applying the filter and transposing back the resulting
array. A 16 x 16 byte block transposition can be
implemented with SIMD unpack instructions. To reduce
the cache misses, we transpose a horizontal tile of 16 x 16
byte blocks into a vertical tile of 16 x 16 byte blocks,
apply the filter on this vertical buffer and transpose back
the resulting column into the initial horizontal tile.
Vectorizing the multiplications is possible if coefficient
values are known. If all coefficients values are less than
256, then multiplying a coefficient by a pixel value fits in

a 16-bit value and using the Pentium 4 SIMD
multiplication on 16-bit inputs and the lower 16-bit of the
32-bit output is OK. As it turns out that 2 coefficients are
positive while the third one is negative, the inner loop can
be implemented as a subtraction followed by an addition
to avoid any overflow. If one coefficient is greater than
256, the expression computed in the inner loop can be
transformed to become similar to the previous case. For
instance, if 256 <b0 < 512, then b0 * X[i][j] >> 8 =
X[i][j] + (b0 – 256) b0 * X[i][j] >> 8 and the
multiplication of the pixel value by b0 – 256 is similar to
the previously described case, and so on. We only give
these details to outline that using SIMD integer
instructions generally needs a detailed knowledge of the
application including the dynamic range of the different
coefficients. With 16-bit or 32-bit FP values, after the
horizontal tile to vertical tile transposition, the inner loop
easily vectorizes.

Table 3: Execution time (CPP) on a 512x512
image on a Pentium 4

Benchmark Scalar
integer

Scalar
F32

SIMD
integer

SIMD
F32

F16

Deriche H 35.5 30 9.1 19.7 9.3

Deriche
HV

33.3 17 6.1 16.9 7

Gradient 17 11 4.1 6.8 3.5/5.3

Table 4: Execution time (CPP) on a 512x512
image on a PowerPC G5

Benchmark Scalar
integer

Scalar
F32

SIMD
integer

SIMD
F32

F16

Deriche H 27.7 10.3 4.2 13.8 5

Deriche HV 25 23 2.2 11.1 2.6

Gradient 17.6 73.6 2.4 5.7 2.5

For the two processors, the 16-bit integer or FP

versions for filters and gradient outperform the 32-bit
scalar integer and FP versions. The 16-bit integer and FP
versions have similar performance, as memory accesses
are the same and the conversions are similar (byte to short
by unpacking with zero expansion, byte to F16 by actual
conversion). The performance differences come from the
difference in integer or F16 operation latencies.

 For the Pentium, the F16 version is slightly slower
than the 16-bit integer version as the additions (latency of
4 for F16 versus 2 for int16) are more frequent than the
multiplications (latency of 6 for F16 versus 8 for int16).

However, the integer versions are specific and depend on
the coefficient values when the F16 version is generic.
The F16 versions exhibit a speed-up close to 2 versus the
float versions for two reasons: there are 8 operations per
instruction instead of 4, and storing byte instead of float
reduces the cache footprint. There are two values for the
F16 version in Table 3: the first one supposes one specific
FABS16 instruction to compute the absolute value while
the second one has not this instruction that doesn’t exist
in the IA-32 SIMD float instructions.

For the G5 processor, the speed-up between F16 and
32-bit FP versions ranges from 2.2 to 4.2. It comes from
the number of operations per instruction, the cache
footprint plus smaller latency values (F16 arithmetic
operations have a latency of 5 instead of 8 and the latency
of conversion instructions is 2, which is less than the
latency of integer to float conversion for the G5
processor).

The best scalar version of the horizontal-vertical
Deriche filter unrolls two times the inner loop. This filter
has no dependency, but the same coefficient problems as
the horizontal one. The only difference between the
horizontal filter and the horizontal vertical execution
times comes from the transposition execution times.

4.2. Scan benchmarks

We now consider the performance for the scan

benchmarks that have a lower computation to memory
access ratio than the previous benchmarks: the +scan has
two additions for three memory accesses. Because of the
accumulation, the accumulator must be large enough to
avoid any overflow. 32-bit integers or floats are typically
used for large images and 16-bit integer for small images.
For the +*scan, the 32-bit integer format has not enough
range: a 234 range is needed for a 512x512 image and a
236 one for a 1024x1024 image. Either the half or the float
format is needed. The outputs can be stored in two
separated matrices of floats, or interleaved in a single
matrix. The F16 version was simulated from an integer
short version and adding extra code for square
computations and accumulations. The +scan (horizontal
add) within a 128-bit register was implemented with 3
couples of addition/shift instructions.

The results for copy, +scan and +* scan are given in
Table 5 for the Pentium 4 and in Table 6 for the PowerPC
G5. The crossed out values correspond to versions for
which the dynamic range is insufficient to get correct
results.

It turns out that the +scan has performance that is close
to the performance of the copy benchmark, which mean
that the +scan is clearly memory-bounded. It is quite
obvious in that situation that using FP formats cannot
bring any advantage and that simply using integer formats
is the best solution.

For the +* scan, the F16 version on the Pentium 4 has
a speed-up slightly less than 2, which is easily explained
by the same reasons as previously. The best 32-bit integer
version, which has not enough range, would run at 12.1
CPP versus 7.5 for the F16 version. We outline that the
SIMD instructions are not suitable to implement the +
scan and +* scan operations as each result correspond to
the sum (or sum of squares) of all the previous results:
this typical recurrence situation prevents automatic
vectorization. A significant number of SIMD instructions
are needed to accumulate the previous sums into a SIMD
register. With the Pentium 4, the SIMD version is always
slower than the scalar one. Only the F16 version is faster
than the scalar 32-bit FP version. The F16 version of +*
scan has 1.3 times the execution time of the fastest copy
with 16-bit integers, which is the lower bound. The
overhead comes from the bookkeeping instructions and
the significant number of copy instructions that results
from the two-operand format of IA-32 ISA (when
destination operand must be preserved, it should first be
copied into another operand). Going further to improve
performance means improving the memory bandwidth
and/or reducing the instruction overhead for loop nests, as
suggested by the MediaBreeze architecture [19].

Table 5: Execution time (CPP) for the +*scan
on a 512 x 512 image on a Pentium 4

Data
formats

I8-
I16

I8-
I16

I8-
F32

F32-
F32

I8–
F16

Scalar
Copy

4.9 9.4 9.5 13.6

SIMD
Copy

4.7 9.2 9.4 12.5

Scalar
+scan

5.6 9.6 10 15.3

SIMD
+scan

7.2 10.
5

10.6 17.5 7.8

Scalar
+*scan

 18.
8

19 17

SIMD
+*scan

9.9 18.
7

18.7 21.3 10.5

Table 6 : Execution time (CPP) of the +scan for
a 512 x 512 image on a PowerPC G5

Data
formats

I8-
I16

I8-
I16

I8-
F32

F32-
F32

I8–
F16

Scalar
Copy

5.5 9.3 62.4 10.4

SIMD
Copy

4.5 6.7 7 7.6

Scalar
+scan

24.3 10.
4

95 18

SIMD
+scan

5.1 7 7.7 15 5.1

Scalar
+*scan

 17.
7

26.7 18.5

SIMD
+*scan

7.8 13 15 15.8 7.8

With the G5, F16 delivers a 1.5 speed-up versus the
32-bit FP format and 1.4 versus the 32-bit integer format
for the +scan. For the +*scan, the speed-up is 1.9 versus
the 32-bit FP format. Opposed to the Pentium 4, the
SIMD versions are better than the scalar ones. As the
Altivec extension is far more complete than the
SSE/SSE2 extension, it is far easier to manually vectorize
the scan benchmarks, which leads to better performance.

4.3. OpenGL benchmark

For the OpenGL stream case study, the reference

version has vertices with float coordinates and stores each
bounded box coordinates as 3 10-bit values packed into a
32-bit integer. The Pentium 4 execution time of the
function is 195 cycles per triangle, which correspond to
CPI=7. The F16 version has vertices with F16
coordinates and store each bounded-box coordinates as a
64 word (3 x F16 + padding). The execution time is 107.5
cycles per triangle and the CPI is 5. The speed-up is 1.8
and results from the eight parallel operations per SIMD
instruction.

The PowerPC G5 execution time of the original
version is 21.5 cycles per triangle versus 10.5 cycles per
triangle for the F16 version. The speed-up (2.0) is close to
the Pentium speed-up, but the G5 uses 9 times less cycles
because it uses half the number of instructions of the
Pentium to transform the initial input data structure into a
structure suitable for SIMD operations and because the
CPI is better (For the initial 32-bit FP version, the G5 CPI
equals 1.6 versus 7 for the Pentium 4). Although, the
overall result is very different because of the difference in
the ISA extensions, the relative performance between F16
and 32-bit FP versions are very similar.

6. Chip area evaluation of F16 functional units

Only a VLSI implementation in the framework of the

actual microprocessor (Pentium 4 or G5) could provide
significant figures to estimate the area, power and timing
features of the 16-bit floating point functional units. To
get a rough preliminary approximation, we used VHDL
models of floating point operators and a 0.18 µm cell-
based library from ST (HCMOS8D technology). The
same approach has been used by Talla et al [13] to
evaluate the hardware cost of the MediaBreeze
architecture. The VHDL models have been developed by

J. Detrey and F. De Dinechin [14]: they include non
pipelined and pipelined versions for the addition, the
multiplication, the division and the square root operation.
The adder uses a close path when the exponent values are
close and a far path when their difference is large. The
divider uses a radix-4 SRT algorithm while the square
root operator uses a radix-2 SRT algorithm. In Table 7,
we show the chip area of the different operators that is
estimated by the Cadence 4.4.3 synthesis tool before
placement and routing. For eight such 16-bit FP
functional units, the chip area would be less than 11%
than the chip area for the four 64-bit FP functional units
that are implemented in the general purpose
microprocessors (we assumed that the same FP units are
used both for single and double precision FP numbers, as
the corresponding instructions have the same latency). In
our evaluation, the 16-bit FP adder is rather large
compared to the other 16-bit operators. The dual path
approach that gives the best results for 64-bit addition is
probably unnecessary for 16-bit addition. A smaller 16-
bit FP adder with a straightforward approach could be
used as mentioned in [6].

Table 7: Estimation of chip area (mm2) for non
pipelined FP operators in a 0.18µm CMOS

technology

Op. Add. Mul. Div. Sqrt Overall
16-bit 0.019 0.016 0.047 0.027 0,110
64-bit 0.097 0.276 1.008 0.679 2,059
Ratio 19.90% 5.91% 4.64% 4.04% 5.33%

7. Concluding remarks

For graphics applications on CPUs and GPUs, there is

a common trade-off between precision and dynamic range
on one hand and cost of storage on the other hand. Many
graphics applications have better performance with
floating point formats than with integer ones. One reason
is that using FP formats make easier compiler or manual
vectorization as FP operations have the same input and
output formats. However, the single precision floating
point format uses four times more memory as a byte
format. When it provides enough precision and dynamic
range, the 16-bit floating point format defined by ILM for
the OpenEXP format and NVIDIA seems a good trade-
off.

In this paper, we have considered a limited set of 16-
bit FP operations and a set of conversion instructions
between byte and 16-bit FP format for two common
general purpose microprocessors. We have measured the
execution time of different versions of typical graphics
benchmarks (Deriche filters, Gradient, scan) with integer,

float and “half” formats. For this last format, we have
simulated the “half” instructions by using actual Pentium
4 or PowerPC G5 instructions having the same latency
and throughput as the simulated instructions. For the
compute bounded benchmarks that can be vectorized, the
speed-up is greater or less than 2 (but close to 2)
compared to the best “float” version. For the +*scan that
needs floating point formats, the speed-up is greater than
2.

A very preliminary evaluation of the chip area shows
that for eight 16-bit FP functional units, the chip area
should not exceed 11% of the chip area currently devoted
to the FP functional units in a Pentium 4 or a G5.

This work will be completed by considering a more
significant lot of graphics and media applications. For
graphics or media applications that are compute-bounded,
F16 speed-up is close to 2 versus 32-bit FP versions. For
graphics applications with byte stored pixels, the F16
versions have performance close to 16-bit integer
versions, but have two significant advantages: compiler
vectorization is greatly facilitated and the dynamic range
is larger for intermediate results. Even when significant
differences between the two considered SIMD extensions
(SSE/SSE2 and Altivec) can lead to significant
differences in performance figures (clock cycles per
pixel), the performance gain between F16 and 32-bit FP
versions are consistent for the two processors for all the
benchmarks.

8. Acknowlegdements

A. Dupret and J.O. Klein, from the IEF laboratory

(University Paris Sud) have provided us the chip area
evaluations using the Cadence synthesis tool with the
0.18 µm ST technology. Their help was greatly
appreciated. F. Tourant, from Apple France Edu,
provided us for a couple of weeks the Dual 2GHz
PowerPC G5 which allows starting experiments on G5.

9. References

[1] OpenEXP, http://www.openexr.org/details.html

[2] NVIDIA, Cg User’s manual,
http://developer.nvidia.com/view.asp?IO=cg_toolkit

[3] Apple, “Introduction to vImage”,
http://developer.apple.com/documentation/Performance/Concep
tual/vImage/

[4] G. Kolli, “Using Fixed-Point Instead of Floating Point for
Better 3D Performance”, Intel Optimizing Center,
http://www.devx.com/Intel/article/16478

[5] D. Menard, D. Chillet, F. Charot and O. Sentieys,
“Automatic Floating-point to Fixed-point Conversion for DSP
Code Generation”, in International Conference on Compilers,
Architectures and Synthesis for Embedded Systems (CASES
2002)

[6] F. Fang, Tsuhan Chen, Rob A. Rutenbar, “Lightweight
Floating-Point Arithmetic: Case Study of Inverse Discrete
Cosine Transform” in EURASIP Journal on Signal Processing,
Special Issue on Applied Implementation of DSP and
Communication Systems

[7] R. Deriche. “Using Canny's criteria to derive a recursively
implemented optimal edge detector”. The International Journal
of Computer Vision, 1(2):167-187, May 1987.

[8] A. Mérigot, Revisiting image splitting, 12th International
Conference on Image Analysing and Processing, pp 314-319,
ICIAP 2003.

[9] S. Horowitz, T. Pavlidis. Picture segmentation by a tree
traversal algorithm. Journal of the ACM, 22:368-388, 1976.

[10] A. Kumar, “SSE2 Optimization – OpenGL Data Stream
Case Study”, Intel application notes,
http://www.intel.com/cd/ids/developer/asmo-
na/eng/segments/games/resources/graphics/19224.htm

[11] Sample code for the benchmarks available:
http://www.lri.fr/~de/F16/codetsi

[12]Apple Developer Connection, “G5 performance
programming”, http://developer.apple.com/hardware/ve/g5.html

[13] D. Talla, L.K.John and D. Burger, “Bottlenecks in
Multimedia processing with SIMD Style Extensions and
Architectural Enhancements”, in IEEE Transactions on
Computers, Vol 52, N° 8, August 2003, pp 1015-1031.

[14] J. Detrey and F. De Dinechin, “A VHDL Library of
Parametrisable Floating Point and LSN Operators for FPGA”,
http//www.ens-lyon.fr/~jdetrey/FPLibrary

