
ICTIS’07 ID 82 1

Efficient Altivec Customization for Embedded
Systems

Tarik Saidani, Stéphane Piskorski, Lionel Lacassagne and Samir Bouaziz

Abstract— General purpose processors have SIMD units that
are dedicated to multimedia and vision applications. This paper
focuses on optimization techniques like instruction specialization
and a new one called RISCization, allowing an efficient implemen-
tation of these same operators on high performance vision SOCs.
Execution time and power consumption can be both reduced by
50% when compared to a standard implementation.

Index Terms— SIMD, Altivec, vectorization, embedded sys-
tems, FPGA, processor customization, high performance image
processing, power consumption reduction.

I. INTRODUCTION

SIMD multimedia instruction set extensions are present in
all general purpose processors (GPP): SEE and SSE2+ for
floating-point and integer computing inside Intel and AMD
processors, Altivec inside PowerPC architectures (G4 and G5)
[3]. Because of the nature of the involved algorithms, these
SIMD instructions are very efficient for vision and multimedia
applications [2]. Adding an existing SIMD instruction set ar-
chitecture (ISA) inside an FPGA presents several advantages.
First, code porting time is very short since the same code
can be used both on the considered GPP and the so-modified
FPGA. Second, not modifying the code prevents extra bugs,
thus reducing debugging time. Third, sophisticated IDEs avail-
able on PC can be used to make the code evolve. Using
the same software and hardware architecture will provide an
efficient way to get an embedded version of an application.
However, the main drawback of this kind of approach is that
SIMD ISAs are quite big to fit within an FPGA. When power
consumption is an issue, PowerPC processors have asserted
themselves for embedded applications and especially PowerPC
G4 with Altivec instructions for image and signal processing.
One way to improve power consumption is to integrate only
the most useful instructions into an FPGA. A second way is to
specialize these selected instructions since the Altivec ISA is
very versatile. This article is a first try to determine what the
useful SIMD instructions for a SoC are, and how to efficiently
implement them. The answer comes in three steps:
• How efficient are SIMD instructions ?
• Should complex instructions be decomposed into more

simple ones ?
• What is the gain provided by restricting capabilities and

removing useless features ?
The first paragraph quickly presents basic algorithms that
are the foundation of a lot of signal and image processing
applications: dot product and Finite Impulse Response (FIR)
filter. The second paragraph deals with RISCization, that is,
applying the CISC-to-RISC concept to SIMD instructions.

Complex SIMD instructions are replaced by a set of more
simple ones that should be efficiently implemented inside an
FPGA. Finally, the last paragraph details the implementation
of such instructions inside a Virtex4 FPGA. Estimation of
maximum operating frequency and power consumption are
provided.

II. SOFTWARE SIMD COMPUTATION

A. Architecture presentation

Altivec is a SIMD arithmetic unit featured with 128-bit
vector registers. It is a more complete ISA than Intel SSE2
and SSE3, and provides some instructions like vec msum
which is very useful for dot product and FIR computations.
The synopsis of the instruction d=vec msum(a,b,c) [7] is
given in Figure 1. Eight bit multiplications are performed to
provide intermediate products that are accumulated through a
4-block reduction inside 32-bit blocks: P = reduc4(A.B).
The second stage of the instruction performs an accumulation
of P with a third register D = reduc4(reduc4(A.B) + C).

1514131211109876543210

1514131211109876543210

x x x x x x x x x x x x x x x x

+ + + +

3210

A

B

AxB

+

3210C

3210D

+ + +

vec_msum = multiply & reduc & accumulate

Fig. 1. Altivec vec msum instruction

From a scalar point of view, the instruction performs sixteen
8-bit multiplications, eight 16-bit and four 32-bit sums, which
gives a total of 36 scalar instructions inside a unique SIMD
instruction. The 4-block reduction step makes this instruction
well suited for filters whose size is a multiple of 4. One can
note that for dot product, a second instruction vec sums should
be used to reduce the four 32-bit blocks D0, D1, D2, D3
inside one block (Figure 2).

ICTIS’07 ID 82 2

3210

+

A

B

D

3

3

vec_sums = reduc & accumulate & saturate

Fig. 2. 4-block reduction with vec sums instruction

B. Software benchmark results

In this section, we provide a benchmark on PowerPC G4 to
compare the execution times of the scalar and SIMD versions
of dot product and FIR. The metric used is the number of
clock cycles per pixel (cpp).

cpp =
t.F

N2
(1)

where N is the width of the input square image, t the execution
time and F the frequency of the processor. In the case of
PowerPC G4, F equals to 1 GHz. We believe that cpp is more
representative than cpi (cycles per instruction) to compare the
complexity per point of different algorithms. Moreover, cpp
is also useful to detect cache misses from one image size to
another. For the benchmarks, data size varies from 128×128
up to 1024×1024.

The first benchmarked operator is dot product, which op-
erates on two vectors of size N2, and computes a scalar
according to the equation:

a.b =
N2−1∑
i=0

ai.bi (2)

Figure 3 is a comparison between the scalar and SIMD
versions of dot product, using the dedicated instruction
vec msum. While the offset between the scalar and SIMD
versions appears to be constant(∆ ' 12 cpp), a big gap of
performances shows up: the speedup is ×4.1 for big sizes
(N = 1024), and increases up to ×45 for small sizes of vectors
(N = 128), when the whole data can fit in cache.

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18
G4!dotp!Scalar

image size

cp
p

scalar
msum

0 200 400 600 800 1000 1200
0

2

4

6

8

10

12

14

16

18

20
G4!fir4!Scalar

image size

cp
p

scalar
msum

Fig. 3. cpp of dot product and FIR4 on PowerPC G4

The second operator is a 4-tap FIR filter:

Y (i, j) =
3∑

k=0

f(k).X(i, j + k) (3)

We use a 4-tap filter to make the dedicated instruction
vec msum the most efficient. Figure 3 provides the same kind
of results for FIR. In that case too, there is a constant offset
between the scalar and the SIMD version: ∆ ' 14 cpp. The
speedup is ×4.4 for big sizes and increases up to ×14.9 for
small sizes. One can note that, the maximum speedup (×45)
is greater than the degree of parallelism (p = 16), since it does
not only come from the CPU architecture, but also from the
cache behavior: SIMD versions perform efficient and aligned
accesses to the cache.

III. RISCIZATION

Before switching to FPGAs and embedded systems, an
intermediate software step addresses the problem of instruction
complexity. This is what we call RISCization. Is it efficient to
replace complex (CISC) SIMD instructions like vec msum by
a set of simpler (RISC) SIMD instructions of the same ISA ?

A

A0

B

A1 B0 B1

x
x

P0 P1

P00 P01 P10 P11

16=>32 16=>32

8=>16 8=>16

C00 P01 P10 P11

+ + + +

D00 D01 D10 D11

+ +

+

D

step #1

step #2

step #3

step #4

step #5

RISC version of vec_msum + vec_sums

8-bit

16-bit

16-bit

32-bit

32-bit

32-bit

Fig. 4. vec msum RISCization

If we have a lool at vec msum, there are several ways
to split this instruction. For example, by replacing 8-bit by
16-bit multiplications (16-bit×16-bit→16-bit) or by replacing
4-block reductions by 4 separate accumulators. The most
simplified equivalent set of instructions is given in Figure 4
and is described below:
• Step 1: input 8-bit operands A,B are converted into two

16-bit data (low part and high part).
• Step 2: a 16-bit block wise multiplication is performed:

no overflow neither truncation since input data are 8-bit
wide.

• Step 3: conversion to 32-bit blocks.
• Step 4: 32-bit accumulation.
• Step 5: reduction (using vec sums) to sum the four 32-bit

blocks.
Figure 5 and 6 present the best cpp for three CISC and

RISC versions. A lot of implementations have been done, with
various schemes to replace reduction instructions for RISC

ICTIS’07 ID 82 3

version. Only three are presented, one for each multiplica-
tion instruction of Altivec ISA: vec msum, vec mladd and
vec mule/vec mulo.
• CISC version with the vec msum reduction instruction,
• RISC #1 version, with the vec mladd 16-bit

multiplication-accumulation instruction: D = A×B+C,
• RISC #2 version, with only the vec mule and vec mulo

8-bit multiplication (8-bit×8-bit→16-bit) instructions.
For RISC versions, reductions are replaced by a set of addi-
tions (vec add) and permutations(vec perm). Of course, RISC
versions are not faster than the CISC one that implements
the vec msum instruction. But when switching to an FPGA
implementation, this could be no more true since running
frequencies depend on the complexity of the involved logical
blocks (worst critical path).

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
G4!dotp!Vector

image size

cp
p

msum
mladd v1
mul v3

Fig. 5. cpp of dot product on PowerPC G4

0 200 400 600 800 1000 1200
0.5

1

1.5

2

2.5

3

3.5

4

4.5
G4!fir4!Vector

image size

cp
p

msum
mladd v2
mul v1

Fig. 6. cpp of FIR Filter on PowerPC G4

IV. EMBEDDED IMPLEMENTATION

To estimate the impact of RISCization, SIMD instructions
have been synthesized into a Virtex4 FPGA. RISC and CISC
blocks combinations have been compared through orthogonal
criteria like area utilization, running frequency F , power
consumption P and execution time t. While cpp is meaningful
for software benchmarks, t should be preferred in the case of
hardware benchmarks. Since the running frequency depends
on the implemented operators, the fastest implementation (with
the smallest t) is not necessarily the one with the smallest

Version cpp Area % F (MHz) P (Watt) t (ms) E (µJ)
256 × 256 data
msum 0.44 22.5 151 0.202 0.191 39
mladd 0.61 24.2 256 0.165 0.156 26
mul 0.97 23.5 209 0.110 0.303 33

512 × 512 data
msum 1.32 22.5 151 0.202 2.292 463
mladd 1.51 24.2 256 0.165 1.545 255
mul 1.78 23.5 209 0.110 2.227 245

1024 × 1024 data
msum 3.91 22.5 151 0.202 27.154 5485
mladd 3.97 24.2 256 0.165 16.251 2681
mul 4.19 23.5 209 0.110 20.969 2307

TABLE I
dot product SYNTHESIS RESULTS

Version cpp Area % F (Mhz) P (Watt) t (ms) E (µJ)
256 × 256 data
msum 1.25 20.5 164 0.213 0.499 106
mladd 1.49 21.2 337 0.258 0.290 75
mul 1.53 21.5 337 0.264 0.298 79

512 × 512 data
msum 1.84 20.5 164 0.213 2.940 626
mladd 2.12 21.2 337 0.258 1.650 426
mul 2.13 21.5 337 0.264 1.658 438

1024 × 1024 data
msum 1.84 20.5 164 0.213 26.908 5731
mladd 2.12 21.2 337 0.258 13.700 3535
mul 2.13 21.5 337 0.264 13.856 3658

TABLE II
FIR SYNTHESIS RESULTS

cpp. And in image processing, execution time is one of the
constraints to enforce.

Two assumptions have been made for the comparison:
FPGA and PowerPC G4 have the same Altivec instructions
latencies and the FPGA could be interfaced with a memory
hierarchy whose specifications (cache size, associativity, and
latencies) would be equivalent to those of PowerPC G4
ones. Using Xilinx ISE and XPower Estimator tools, power
consumptions have been estimated for each standalone SIMD
Altivec instruction (these measures do not take into account
the consumption of the I/O blocks). Tables IV and II present
the results for 256×256, 512×512 and 1024×1024 data sizes.

In order to estimate the efficiency of the embedded system,
we measure the amount of energy E = t × P required to
compute the algorithm. Once the processing speed is enforced
(typically t < 33ms for 30 images/s), the total energy E is
the constraint to optimize, not only the power P . One can
note also, that synthesis tools provide the maximum running
frequency. If the overall algorithm implementation is too fast,
implying a too high power consumption, the system can be
downclocked.

First, if we look at the execution time, we can see that
the CISC version is never the fastest one, but vec maldd
which is a complexity golden mean between vec msum and
vec mule/vec mulo. Gains vary from ×1.2 up to ×1.6 for dot
product and from ×1.7 up to ×2.0 for FIR. These results are
very important: from the execution time point of view, a direct

ICTIS’07 ID 82 4

implementation into an FPGA of the classic dedicated and
“optimized-for” CISC instruction will lead to a non optimal
implementation .

Second, if we focus on energy, the gains between CISC and
RISC version range from ×1.6 up to ×2.0 for dot product and
from ×1.4 up to ×1.6 for FIR. That validates our RISCization
approach: usually the fastest implementation is also the most
power hungry one, but it the case of mapping SIMD instruction
from a general purpose processor to an FPGA, this is not the
case: RISC implementations are quick and energy efficient !

V. INSTRUCTIONS CUSTOMIZATION / SPECIALIZATION

b

01 14 18 10 16 15 19 1A 1C 1C 1C 13 08 1D 1B 0EC

a1 a3 a5a0 a2 a4 a6 a7 a9 aB aDa8 aA aC aE aF

0 1 2 3 8 96 74 5 A B C D E F

A

a1 b4 b0b8 b6 b5 bAb9 bC b3 bDbC bC a8 bB aED

b0 b1 b3b2 b4 b5 b7b6 b9 bB bDb8 bA bC bE bFB

vec_perm: cross-bar

Fig. 7. Altivec permutation instruction

The last step to improve FPGA implementations is to
reduce the useless capabilities of versatile instructions. The
Altivec instruction vec perm (synopsis Figure 7) is an in-
teresting example. This instruction behaves like a complete
crossbar and can perform permutations with regular patterns
(as SSE2+ instructions can do), but also irregular patterns.
For an algorithm or an application, only a few set of these
capabilities are useful. For dot product and FIR, the only
need is to construct unaligned vector registers. By special-
izing, on demand, such an instruction, area size and power
consumption can be drastically reduced. Specialization has
been applied to the multiply-add operation vec mladd. The
instruction is split into two instructions: vec mul that does
not exist in Altivec ISA in 16-bit version, and vec add
(vec mladd(A,B,C)=vec add(vec mul(A,B),C)).

instruction area reduction power reduction
vec sums 32 % 1 %
vec msum 32 % 3 %
vec mladd 22 % 3 %
vec sum4s 30 % 3 %

vec perm (v1) 56 % 5 %
vec perm (v2) 35 % 5 %

TABLE III
GAIN PROVIDED BY CUSTOMIZATION

Table V presents the area and power consumption reduction
provided by instruction specialization. One can note that power
gain is not important because the difference between versions
resides in the logical blocks; these blocks are not great power
consumers. However, customization can significantly reduce
area occupation. As SIMD instructions are quite big they can

prevent from completing a synthesis. Area reduction is the
only solution to make all the required SIMD instruction fit
into an FPGA.

VI. CONCLUSION

We have presented the design of an Altivec SIMD instruc-
tion unit for FPGAs. The major advantages of designing an Al-
tivec compatible unit is to be able to directly reuse PowerPC-
aimed C code, without modifying it, into an FPGA, nor adding
bugs, and thus reducing development time. We have used
optimization techniques like instruction specialization and
presented a new one called RISCization applying the CISC-to-
RISC concept to hardware instruction implementation. Impacts
of RISCization on basic signal processing algorithms are very
interesting: the energy consumption has been reduced by a
factor ranging from ×1.4 up to ×2.0 and area has been also
reduced by a factor ranging from ×1.3 up to ×1.5. Current
and future works are to develop high-level tools to perform
an automatic design space exploration of the configurations
to efficiently implement Altivec coded applications into an
FPGA.

REFERENCES

[1] S. Patel, Altivec Programming: A Hands-On Tutorial, Architec-
ture and Performance Group, Apple Computer Inc.

[2] K. Diefendorff and al, Altivec Extension to PowerPC Accelerates Me-
dia Processing, 23 IEEE Micro, vol. 20, no. 2, Mar. 2000, pp. 85-95.

[3] L. Gwennap, Altivec Vectorizes PowerPC, Microprocessor Report, vol.
12, no. 6, Mar. 1999.

[4] D. Talla and L.K. John, Cost-effective Hardware Acceleration of Multi-
media Applications, in Proceedings of the International Conference on
Computer Design: VLSI in Computers and Processors, 2001.

[5] L. Han, J. Chen, C. Zhou, Y. Li, X. Zhang, Z. Liu, X. Wei and B. Li, An
Embedded Reconfigurable SIMD DSP with Capability of Dimension-
Controllable Vector Processing, in Proceedings of the IEEE International
Conference on Computer Design (ICCD’04).

[6] John L. Hennesy, Computer Architecture: a quantitative approach, third
edition, Morgan Kaufmann Series in Computer Architecture and Design.

[7] Altivec Technology Interface Manual, Motorola, Freescale Semiconductor.
[8] Apple Developer Connection: Velocity Engine, http://developer.

apple.com/hardwaredrivers/ve/ .

