A fast and robust image segmentation scheme

Thomas Kunlin

Lionel Lacassagne

Alain Mérigot

Institut d’électronique fondamentale
Université Paris sud
91405 Orsay Cedex, FRANCE

kunlin @ief.u-psud.fr

Abstract

This paper presents a modified version of the classical
split and merge algorithm. Instead of performing a regular
decomposition of the image, it relies on a split at an opti-
mal position that does a good interregion separation. The
implementation of the algorithm uses an initial image pre-
processing to speed-up computation. Experimental results
show that number of regions generated by the split phase is
largely reduced and that the distorsion of segmented image
is smaller, while the execution time is slightly increased.

1. Introduction

The Split and Merge segmentation method [2] is a well
known method to extract homogeneous region from an im-
age. It consists to recursively split the image in four regular
quadrants until every segment is homogeous enough, then
to merge the obtained regions as long as the merging re-
spects some homogeneity criterion. Despite several advan-
tages (in terms of simplicity and computational efficiency),
this method exhibits several drawbacks, mostly based on the
rigid space subdivision that it uses.

This paper presents a new segmentation scheme based
on this method. The main difference is that, instead of per-
forming a regular decomposition of the (sub)image, at ev-
ery step, the split will be performed at a variable position, in
order to optimize a given criterion. It happens that some im-
plementation tricks, relying on an initial prefix sum compu-
tation preprocessing step, allow this method to be almost as
efficient in terms of computational efficiency as the classi-
cal split and merge, while giving better segmentation results
and being much more flexible.

Section 2 presents the basic issues on the method. Sec-
tion 3 describes how this optimal splitting scheme can be
efficiently implemented. Section 4 presents the results ob-
tained with this method.

lacas @ief.u-psud.fr

am@ief.u-psud.fr

2. Split and merge segmentation

2.1. The Horowitz-Pavlidis split and merge algo-
rithm

The classical split and merge algorithm (HP-SM), pre-
sented in 1976 by Horowitz and Pavlidis [2] relies on the
following algorithm:

Algorithm 1 Horowitz Pavlidis Split and Merge
1 Split(Region R)
2 if R is not homogeneous enough then
3 split R in four equally sized regions R1,R2,R3, R4
4 for r in Rl,Rz,Rg,, R4 do
5 Split(r)
6 end do
7 end if
8 Merge(RegionSet Ry)
9 repeat
10 get two regions 7 and v’ in R, that are neighbor and
similar
11 merge 7 and 1’
12 until no regions can merge
This algorithm presents several advantages :

1. The split phase is very fast. The homogeneity predi-
cate (line 2), that generally relies on a comparison of
region R variance with a predefined threshold can be
very rapidly computed in an upward pyramid-like pass.

2. The data structure obtained after the split phase,
a quadtree[4], leads to efficient and flexible
implementations|3].

HP-SM also has a set of drawbacks :

1. It can only determine regions with horizontal or verti-
cal frontiers. Hence, to deal with the general situation,
a large number of small regions are generated in the
split phase.

2. Regions boundaries are at fixed positions. Accord-
ingly, there is no invariance of the resulting data struc-



ture with simple geometrical transformations as trans-
lation or even scaling.

3. The methods relies on a square image, whose sides
must be a power of two.

2.2. Optimal splitting

To partially cope with the limitations of HP split and
merge, we propose a couple of modifications of the split
phase of the algorithm. First, instead of performing a reg-
ular decomposition of an heterogenous region in equally
sized regions (line 3 of algorithm 1), we will perform the
decomposition at a position that optimizes a certain split cri-
terion. Second, as this kind of decision is easier to take in
one dimension, and can be more precisely determined, the
split phase will decompose a region in fwo parts, instead of
four. Here is the optimal split algorithm:

Algorithm 2 Optimal split

1 Optimal-Split(Region R)

2 if R is not homogeneous enough then

3 split R either vertically or horizontally in two regions
R, and Ry at a position P that optimizes a given split
criterion SC'

4 for r in R; and R2 do
5 Optimal-Split(r)

6 end do

7 end if

The split criterion SC' (line 3) must perform a good in-
terregion separation. For instance, one could try to find a
point such as the difference of the average grey level be-
tween regions R; and Ry is maximized. Several methods
can also be used to determine if the split must be vertical or
horizontal.

This algorithm withdraws most of the disadvantages of
HP-SM, except the horizontal or vertical region shape limi-
tation. The number of regions after the split phase is much
smaller than in the HP-SM algorithm. As the optimal point
depends on image data, and not on geometrical character-
istics, the split image exhibits a good stability for simple
image transformation (translation, scaling). Last, any im-
age size can be used. This technique can also be used on
specific rectangular parts of the image, if we want to specif-
ically perform a segmentation on some subimages.

We show in the next section, that despite the necessity
to optimize a a split criterion, it is possible to realize a fast
implementation of this segmentation scheme.

3. Implementation issues

Let us consider image I(x,y) : 0 < 2 < N,,0 <y <
Ny, and arectangular region R described by the coordinates
of its top-left and bottom-right points (xo, yo)(z1,y1). We
want to split horizontally R at a position y,,, in two regions

Ra = (z0,y0)(z1,ym) and Rp = (20, ym + 1)(x1, 41).
To perform that two problems must be solved :

e We need to determine region R homogeneity, to decide
if it requires splitting (line 2). The most frequently
used criterion is the variance of I over region RR.

e We need to determine the optimal split position (line
3). Point y,, must be selected in order to provide a
good separation between different segments of the im-
age. For instance, it can be determined to maximize
the difference of the average value of I over regions
RO and Rl.

In either case, we can see that the problem is mostly
to compute efficiently global sums over rectangular re-
gions. We describe in next section how it can be very effi-
ciently realized thanks to so-called prefix-sum, also known
as scans[1].

3.1. Scan operations and global sums

Scan operations are defined as follows: given an asso-
ciative operator ¢ and a vector v(z) : 0 < x < a7,
the o-scan of v returns a vector w = ¢ —scan(v), such as
w(z) =v(0)ov(l)o...ov(x—1)cv(x).

As we are concerned with computing sums, this can ex-
pressed as +—scan(v) = w with w(z) = Y. v(i).

On a two dimentional array, such as image I, these op-
erations can be performed either vertically on the columns
of I or horizontally along the lines. If we perform suces-
sively this operation in both directions on image I, we get a
new array oy, suchas o7(z,y) = > g<;<p Do<jcy 106 7)-
We can deduce the sum over any rectangular region R =
(1‘0, yo)(l‘l, yl) from or.

Z I(Ivy) = O—I(xlvyl) +O-I(:I:O - 1ay0 - 1)
(w,y)ER

—or(z1,y0 — 1) —or(xzo—1,y1) (1)

We assume that o7(—1,y) = or(x,—1) = 0. Hence, a
global sum over any region of image I can be easily and
rapidly computed provided we have previously determined
the prefix sums o;. For variance computation, we will also
need to have the sum of the square of pixel in /. The same
preprocessing leads to the sum image o2.

3.2. Computing the homogeneity predicate

As a direct application, let us see how to compute the
homogeneity predicate for a region R = (2o, yo)(z1,91),
in order to determine if it requires splitting. We assume that
the considered predicate is based on the variance V' of the
image on the region.

ViR = Y Py - (Y M) @

(z,9)ER (z,y)ER



where N = Card(R). This can be simply rewritten with
the sum arrays o and o2 of image I and its square as :

1
V(R) = N(Uﬂ (x1,91) +or2(zo — 1,0 — 1)

—orz(w1,y0 — 1) — op2(z0 — 1,91))
1
_m(af(xhyl) + 0'[(.1'0 - 1) Yo — 1)
—or(z1,90 = 1) = or(wo — 1,41))* (3)
Hence, the variance computation on any rectangular re-

gion can be done with a constant small number of opera-
tions on the sum arrays oy and o2.

3.3. Determining the optimal split position

To determine the optimal split position of a region, we
use the following criterion (we assume that the region will
be split horizontally). Given a region R = (x, yo)(x1, y1),
find the position y,,, that maximizes the absolute value of
the difference of the average of I over adjacent k-pixel high
stripes. More formally, find y,,, that maximizes

D)= > I1GiH- Y 1GH @
(4,5)€SB(x) (4,5)€ST ()
where St(x) and Sp(x) are the stripes respectively ending
and starting at position z, eg S (z) = (zo,y—k+1)(21,v)
and Sp(x) = (zo, y+1)(z1, y+k). The difference can thus
easily be expressed with ;.

D(y) = or(z1,y+k)+or(z1,y—k)—or(zo—1,y+k)

*01(1:0717y7k)+2 X (O’[(Z'()*l,]J)*O’](.Tl,y))
(5)

Typycal values of k are 20% of the height of R, bounded to
1-7. The calculation of D(y) along the range [yo — k + 1 :
y1—k] can be vectorized for further gain on the computation
time.

4. Segmentation results

We present here some segmentation results and compare
the original Horowitz-Pavlidis split algorithm with several
versions of optimal split. In every case, we consider as
the main parameter the threshold v, the square of which
is compared to the variance to decide if a region needs addi-
tional splitting. Values in the range 10-30 give good results.
Above, the resulting image is too degraded, below, the num-
ber of regions is very large. To limit the number of regions,
regions below a certain size (5 pixels) are not split.

4.1. Considered algorithms
4.1.1 Original Horowitz-Pavlidis algorithms HP4 and
HP2

The first considered algorithm is the original Horowitz-
Pavlidis one. We test homogeneity of a region and, if it

is required, we split it in four equal subregions. This algo-
rithm will be denoted as HP4.

A small variation on this method consists to realize a
binary split. If the region is square, we split it in two equal
horizontal rectangles, if it is rectangular, the split will be
vertical. Such a variation will be denoted HP2.

4.1.2 Optimal split OS1D, OS2D and OS2Dx

These algorithms will be compared to several flavors of op-
timal split. These versions differ in the way the split point
and direction is determined. For all these versions, we will
use the difference of the grey value of adjacent stripes as the
split criterion.

OS1D is a version close to HP2, in the sense that the
shape of the region determines the split direction. If the
region is square, it is split horizontally, otherwise, it is split
across the largest dimension. The split point is selected at
an optimal position.

OS2D is a slight amelioration of the previous method
that consists to perform a double search for the optimal split
point in either vertical and horizontal directions. The direc-
tion with the largest interstripes average difference is se-
lected.

One drawback of the described methods is that they fail
to segment small regions drowned in larger ones. OS2Dx
is a modification of OS2D to improve this behavior and
consists in performing a detailled examination on a region
whenever it is considered as homogeneous. We conceptu-
ally tile the region with small £ x k squares and check for
the homogeneity of every square. Whenever a single square
is not homogenous, we decide to split the region. Typical
values of k in the range 5-11 give good results. Of course,
the variance computation on every square can be rapidly
performed thanks to the scanned sum image.

4.2 Test image segmentation results

To compare the results, we use two features. The num-
ber of generated regions n, that should be as low as possible,
and the PSNR that measures the likeness of I to I*, respec-
tively the original image and its approximation by replacing
each region by the average value of its pixels.

Figure 1-a plots the PSNR vs n of each method for the
512x512 image lake. We see the similar behavior of HP2
and HP4 and a significant improvement in the OS methods.
Searching in both directions (OS2D) improves the results
with respect to OS1D. OS2Dx generates a slightly larger
number of regions, but the PSNR gain is quite significant.
Images 1-b and 1-c shows a comparison of the OS2Dx and
HP4 method on lake : for v;=16, OS2Dx produces 33%
less regions and the visual quality of the segmented image
is obviously better than HP4. For less contrasted images,
the visual quality gain of the OS methods compared to HP4



PSNR

x
£
%

0 5000 10000 15000 20000 25000 30000
regions

(a) lake: PSNR/regions

(b) HP4: n=18634,PSNR=25.99

)
n?i

(c) OS2Dx: n=12342,PSNR=28.01

Figure 1. Segmentation results on the ’lake’ picture (512x512).

is smaller, but the gap on the number of regions produced
remains important.

4.3 Computation time

We use the CPP (number of cycles per pixel) to measure
the computation times of the different methods. All the re-
sults were obtained on a 2.4 GHz Pentium 4, using gcc 3.3.

4.3.1 Comparison of HP4 and optimized HP

The fast execution time of the HP algorithm is achieved
thanks to a pyramid data structure also obtained from a pre-
processing stage. The results indicate that the computation
times of such an implementation of HP and of algorithm
HP4 - that uses o7 and o2 prefix sums - are very near :
the preprocessing time is 35 CPP for both methods, and the
split phase is 5% slower in HP4 than in the optimized im-
plementation of HP.

4.3.2 Comparison of the considered algorithms

Figure 2 represents the computation time of the algorithms
presented in 4.1. It gathers the results of every method for
several 512x512 pictures.

We can see that the OS methods lie in a factor 2-3 of
HP4. These computation times stay quite compatible with
real time constraints : for 512x512 images on a 2.4 GHz
CPU, 200 CPP permits a framerate of 45. Right now, the
sigma transform has been vectorized both for Intel SSE2
and PowerPC Altivec SIMD extensions. The speed-up is,
respectively 1.7 and 2.4. The optimal split position compu-
tation represents 50% of the overall CPU time and should
be accelerated by a factor 4. According to Amdhal’s Law
the global speed-up of the OS methods would be 1.6, a fully
SIMD optimized version is currently under developpement
and should confirm this statement.

5. Conclusion

We have presented here a new algorithm based on the
standard split algorithm of Horowitz-Pavlidis, that relies

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
regions

Figure 2. Complexity of the algorithms.

on the determination of an optimal split position. While
preserving the most interesting features of the original
method (speed, simplicity of the obtained data structure),
it presents significative improvements. The number of re-
gions is largely reduced and the generated image is closer
to the original one. More, this method can be applied to
any rectangular shape. It can for instance be applied to a
subregion of the image where a specific object is searched.
Another interesting aspect is the good invariance by trans-
lation and scaling that this method presents, and that could
allow to use it for structural pattern recognition. There is a
small time overhead compared to the original method, but
the method is still compatible with real-time constraints. Its
speed and the possibility to adapt the split position and pre-
cision to specific tasks, make it a good candidate for time-
critical image analysis applications.

References

[1] G. E. Blelloch. Vector Models for Data-Parallel Computing.
The MIT Press, Cambridge,Massachusetts, 1990.

[2] S. Horowitz and T. Pavlidis. Picture segmentation by a tree
traversal algorithm. Journal of the ACM, 23:368-388, 1976.

[3] L.Balmelli, J.Kovacevié¢, and M. Vetterli. Quadtree for em-
bedded surface visualization: Constraints and efficient data
structures. Proceedings of IEEE Int. Conf. Image Processing
(ICIP), 2:487-491, October 1999.

[4] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, Readin, MA, 1990. ISBN 0-201-
50255-0.



