
Fast Reliable Level-Lines Segments Extraction

N. Suvonvorn, S. Bouchafa, L. Lacassagne
Institut d'Electronique Fondamentale, Université Paris-Sud

91405 Orsay FRANCE
nikom.suvonvorn@ief.u-psud.fr, samia.bouchafa@ief.u-psud.fr, lionel.lacassagne@ief.u-psud.fr

Abstract

We propose a fast level-line extraction algorithm
that could be used as a basic and generic feature
extraction algorithm for several applications like
motion analysis, robot navigation, image registration or
stereovision. We give details of the implementation, the
complexity and the execution time.

1. Introduction

In many applications (stereovision, motion, analysis
or registration), we need to match features extracted
from images. The nature of the features will play a
significant role for the choice of the matching strategy.
Less reliable features lead to very complex matching
processes that have to compensate for their sensitivity
toward several perturbations like contrast changes.
Indeed, images to match are seldom shot in similar
lighting conditions. However, commonly used
primitives remain sensitive to contrast changes. Either
they depend on gray-level values (points, regions), or
they suffer a lack of real contrast-independent extraction
methods (edges, contours). We choose Level lines as a
basic feature for our motion analysis [1] and registration
algorithms [2]. Their invariance property toward
contrast changes has been proved by several authors
[3][4][5] and verified experimentally using outdoor
complex sequences [6][7]. We propose here a very fast
level-line extraction process that could be used as a
basic and generic feature extraction algorithm. Our
paper is organized as follow: the first part concern to the
reliability of line-segments by introducing the notion of
level-lines flow, the second part, we propose a fast
algorithm for level lines extraction, the third part, we
discuss about the precision of approximated line-
segments, and the last part, we show resulting speed-up
and discussion.

2. Reliable line-segments

Let)(pI be the image intensity at pixel location
),(p yx . The level set of I is the set of pixels p with

intensity equal or greater than λ .

 })({ λλ ≥= pp IIN (1)

The boundary of a level set
λ

N is called level line
λ

L .

One could extract level lines by using a series of
thresholds (such as λ={0,1,2...255} for an 8-bit image).
We propose a method that exploits an elementary level-
line property: level sets are included one in another.
Thus, level lines could be locally juxtaposed but they
never could cross. Therefore, we propose a simple
recursive extraction process that tracks groups of level
lines (the superimposed ones) until they separate. A
group is called level-lines flow [LLF].

Definition 1 Let),(p),,(p yxjiS be all the level sets

between any two neighbors pixels),(p ji and),(p yx
where 1|||| =−+− yjxi . The boundaries associated
with all these level sets are called level-lines flow

),(p),,(p yxjiF

]},[/{),(p),,(p ul

I
yxji NS λλλλ ∈= (2)

]},[/{),(p),,(p ul
I

yxji LF λλλλ ∈= (3)

Where 1),min(),(p),(p += yxjil IIλ

And),max(),(p),(p yxjiu II=λ

Definition 2 Let)(),(p),,(p yxjiFCard be the number of

level lines in level-lines flow between pixels),(p ji and
),(p yx , called level-lines flow value.

The flow allows treating level-lines by groups.

Therefore, the extraction process is less time-
consuming.

Definition 3 A Flow Junction is located in every point
where two different level-lines flows meet.

3. Fast Level-Line Flow Segments Tracking

In this section, we show how level-lines flows could
be tracked through any junction in the image and
approximated by line segments. The tracking process is
performed with 5 steps:

Step 1 consists of computing level-lines flows value

on every pixel in the image and storing it in a memory
fM .

Step 2 consists of scanning each pixel in order to
track its associated flow. The process begins on each
point, calculates the current flow Fc and then tracks this
flow in four different directions (4-connexity),
determines which of its four neighbors is the successor.
This tracking process is repeated until the following
conditions are no more verified.

Condition 1 The successor flow value in the memory Mf
is greater than zero.

Condition 2 The successor flow Fs includes the current
flow Fc (the current flow is a subset of the successor
flow).

 sc FF ⊆ (4)

The figure 1 (a) shows an example of flow junction

where F1={Lλ ⁄ λ ∈ [11, 20]}, F2={Lλ ⁄ λ ∈ [6, 10]} and
F3={Lλ ⁄ λ ∈ [6, 20]}. We found that F1 ⊂ F3 and F1 ⊄
F2. Thus, if the current flow is F1, the successor flow is
F3, not F2.

In order to obtain all level-lines flows which pass
through the current pixel. The process has to start in
two different directions: left turning tracking (λu is on
the left side of flow) and right turning tracking (λu is on
the right side of the flow). The current pixel is then at
the middle of level-lines flow.

 (a)

F1={Lλ ⁄ λ ∈ [11, 20]}
F2={Lλ ⁄ λ ∈ [6, 10]}

 (b)

(c)

 (d)

Figure 1. (a) Flow junction (b) Left turning tracking
direction IL<IR (c) Right turning tracking direction
IL>IR.

Step 3 When the tracking process stops, in order to
avoid to track a flow once again for another point, level-
lines flow value in Mf on each analyzed pixel is updated
by subtracting the current flow value.

Step 4 At this point, we get a list of pixels that
corresponds to flow path. In this step, we will
approximate this list by a line-segment. At the
beginning of approximation process, we assume that
this list of pixels could be approximated by only one line
and then the distance from each pixel to this line will be
calculated by using equation 5. If the maximum distance
of these distances is greater than a given threshold, the
line segment will be cut into two lines at the pixel that
have the maximum distance. This process will repeat
until the maximum distance is less than this threshold.

22

||

BA

CByAx
D

+

++
= (5)

Note that the result of this method depends on a

threshold. We will explain in the next section how to
choose automatically this value.

Step 5 consists of calculating the reliability Rl of
level-lines segments.

)(cl FCardLR ×= (7)

Where L is the length of level-lines flow.

4. Line-segment precision

In the previous section, we show that line segments

could be approximated from a list of pixels by
considering that the distances between each pixel in the
list and line segment are less than a given threshold. In
this section, we propose an automatic method to find the
optimum threshold Dopt. In order to determine this
threshold, we define the following terms:

Definition 4 Let),(p 00

)(yxmP be set of pixels located at

the distance m, far from pixel),(p 00 yx , where),(p 00 yx
is a pixel in image space.

}||||/),(p{)(),(p 00

myxyxmP mmmmyx =+= (8)

Definition 5 Let),(p 00

)(yxmG be set of pixels associated

to),(p 00
)(yxmP .

},/),(p{)(),(p 00 msmsssyx nyynxxyxmG === (9)

Where),(p),(p 0000
)()(yxyx mPmG ⊂

And ∞= ...1n

Definition 6 Let),(p 00
)(yxmL be set of lines in different

degrees around),(p 00 yx , which is represented by

),(p 00
)(yxmG .

F1 F3

F2

20

10 5 F2

F1

 }0{)(),(p 00
=−= xyyxmL mmyx

(10)

Definition 7 Let),(p 00
)(yxmθ be set of possible angles

between any lines in),(p 00
)(yxmL .

 |})(tan)(tan{|)(11
),(p 00 ni

nj
i
j

m yx −
−

−= −−θ (11)

Where nmmnmi ,...,)2(,)1(−−=
 And nmnnj)1(,...,2, −=

The figure 2 (a) shows)(mG and)(mL in image at

pixel),(p 00 yx , where m=3.
There are two properties according to these

definitions:

Property 1 For each value m , an image could be
discretized with a finite number of angles.

Property 2 The more the value of m is large; the more
the value of)(mθ is small.

From these definitions, we found that a pixel),(p ji

in)(mG could be a part of three possible lines. The first
is the line that passes though itself, the second is the
nearest line on the left and the last is the nearest line on
the right.

Definition 8 If),(p ji is a pixel in)(mG ,),(p ji will be
a part of a line that the distance between them is
minimum.

However, we will not consider the first line because
the minimum distance between them is always zero.
Therefore,),(p ji could be a part of only the line located
on its left side or on its right side. For),(p ji in every
direction, we search the maximum distance. Thus, we
can define the following relations.

 },{ 21j)p(i, llL =

(12)
Where 0)()(1 =−−+ xnjynil a

And 0)()(2 =+−− xniynil a

 }},{min{max 21

,
)jp(i, DDD

Dji
= (13)

Where
22

1
)()(

|)(|

njni

jin
D

−++

+
=

 And
22

2
)()(

|)(|

njni

jinD
++−

+=

With equation 13, we found that),(p jiD is maximum

at the pixel)2,2(p mnmn (if m is even number) and at
the pixel)2)1(,2)1((p nmnm +−) (if m is odd number).
If we assume that we can represent lines at
pixel),(p 00 yx in very directions, it means that θ(m) is
near to zero (θ(m)→0). Therefore, m is near to the
infinity (m→∞).

(a)

(b)

Figure 2. (a) shows)(mG and)(mL in image where

3=m (b) the minimum distance between pixel),(p ji
and two beside lines.

 2)
2

,
2

(plim =
















∞→
n

m
n

m
D

m

(14)

 2)
2

1
,

2
1

(plim =














 +−

∞→
n

m
n

m
D

m

(15)

From equations 14 and 15, we found that pixel
),(p ji could be a part of line that the maximum

distance between them is 2 , which could be
considered as the optimum threshold Dopt.

The figure 3 (a) is an image (with tracking result)
that represents 32 lines in different directions around a
point. The angle between two lines is 11.25 degrees.
The figure 3 (b) shows histogram of lines according to
the thresholds between zero and two. It show that if the
threshold value is greater than 1.42, we can track 32
lines, which is the optimum number. The figure 3 (c)
show histogram of lines according to the angles between
0 and 360 degree at threshold value 1.42, we found that
each line can represent very well its direction. Like we
can see that at the same degree 276, we have two lines.
The figure 3 (d) show histogram of lines at threshold
value 1.62, we found that there is only one line at 276
degree and the other line at 275 degree. It means that
we have error of lines angle at this threshold. According
to a series of experimental, we found that the optimum
threshold is 1.42.

Figure 3. (a) Result of line extraction (b) Total number
of extracted lines according to threshold distance value
(c) histogram of angles using a distance threshold equal
to 1.42 (d) histogram of angles using a distance
threshold equal to 1.6

5. Multi-Resolution Line-Segments

Figure 5. Shows
6. Benchmark

The theoretical complexity of such king of

algorithms, very image-dependent, can’t be expressed
easily. So, we decided to perform a benchmark, in order
to estimate the impact, the speed-up, of the Flow
optimization. We have tested different kind of images:
outdoor natural image (parking), indoor classical
images, (corridor & desk), synthesis image and high-
textured image (leaves).

- Outdoor natural image (parking), for future
application,

- Indoor classical images, (corridor & desk) for
autonomous robot navigation,

- Synthesis image, for execution time low bound
estimation,

- High-textured image (leaves) for high bound
estimation.

The evaluation has been done on a Pentium 4, 2.4
Ghz, we used Intel 8.0 compiler, 75 % faster than
Microsoft compiler. We prevent polluted measures from
OS by running the benchmark in a loop and removing
polluted results. We provide the execution time in ms
and also the Cycle Per Points figure (cpp which is a
frequency and image size independent figure) for both
classical algorithm and the new algorithm

Name Size Org(ms) New(ms) Speed
-up

Parking 640x480 1812 210 8.6
Corridor 256x256 953 62 15.4
Desk 256x256 796 60 13.3
Rays 256x256 3735 9 415
Leaves 256x256 5969 190 31.2

Table 1. Execution time (ms)

Name Size Org (cpp) New (cpp)
Parking 640x480 14156 1641

Corridor 256x256 34900 2271
Desk 256x256 29150 2197
Rays 256x256 136780 330
Leaves 256x256 218591 6958

Table 2. Execution time (cpp)

We can notice, that the speed-up is very important:
from 8 up to 15 for natural images, and 30 for high
textured image. Such kind of results proves the LLF
algorithm modification.

From a qualitative point of view, the cpp figures are
very similar for natural image. This is also an important
result for any embedded algorithm: the capability to
predict, or to get a reasonable average execution time.
More tests should be done to get a fine prediction, but
this first result is interesting.

From a quantitative point of view, the gap to real-
time execution is not so far. We expect to get a real-time
implementation with a State of the Art or, at least, the
next generation of RISC processor. High-end embedded
processors like Texas Instrument DSP C64 should also
provide enough CPU power.

Figure 4. Shows the results of algorithm.

7. Conclusion

In this paper, we have introduced new algorithm for

level lines extraction, based on flow computation called
level-lines flow, which robust to contrast changes. We
propose a recursive process for tracking the level-lines
flow through flow junctions in image. The extracted
level-lines flows are precisely approximated by sets of
line-segments that could be used as a reliable basic
feature for many applications such as motion analysis or
stereovision.

The benchmark using representative images for usual
applications show a speed-up of 8 up to 15. Such kind of
results represents an advance for a real-time
implementation.

8. References

[1] S. Bouchafa, Motion detection invariant to contrast
changes. Application to detecting abnormal motion in
subway corridors, PhD thesis., University Paris 6, 1998.
[2] S. Bouchafa and B. Zavidovique, “Cumulative level-
line matching for image registration,” ICIAP, p. 176,
September 2003.
[3] V. Caselles, B. Coll, and J. Morel, “Topographic
maps and local contrast changes in natural images,”
International Journal of Computer Vision, vol. 33, no.
1, pp. 5–27, September 1999.
[4] P. Monasse and F. Guichard, “Fast computation of a
contrast-invariant image representation,” IEEE Trans.
on Image Proc., vol. 9, no. 5, pp. 860–872, 1998.
[5] C. Ballester, E. Castan, M. Gonzalez, and J. Morel,
“Contrast invariant image intersection,” C.M.L.A, no.
9817, 1998.
[6] J.L.Lisani, P. Monasse, and L.I. Rudin, “Fast shape
extraction and applications,” C.M.L.A,, no. 2001-16,
2001.
[7] J. Froment, Image compression through level lines
and wavelet packets, Wolters Kluwer Acad. Pub., 2001.

