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Abstract 
 

We propose a fast level-line extraction algorithm 
that could be used as a basic and generic feature 
extraction algorithm for several applications like 
motion analysis, robot navigation, image registration or 
stereovision. We give details of the implementation, the 
complexity and the execution time.  
 
1. Introduction 
 

In many applications (stereovision, motion, analysis 
or registration), we need to match features extracted 
from images. The nature of the features will play a 
significant role for the choice of the matching strategy. 
Less reliable features lead to very complex matching 
processes that have to compensate for their sensitivity 
toward several perturbations like contrast changes. 
Indeed, images to match are seldom shot in similar 
lighting conditions. However, commonly used 
primitives remain sensitive to contrast changes. Either 
they depend on gray-level values (points, regions), or 
they suffer a lack of real contrast-independent extraction 
methods (edges, contours). We choose Level lines as a 
basic feature for our motion analysis [1] and registration 
algorithms [2]. Their invariance property toward 
contrast changes has been proved by several authors 
[3][4][5] and verified experimentally using outdoor 
complex sequences [6][7]. We propose here a very fast 
level-line extraction process that could be used as a 
basic and generic feature extraction algorithm. Our 
paper is organized as follow: the first part concern to the 
reliability of line-segments by introducing the notion of 
level-lines flow, the second part, we propose a fast 
algorithm for level lines extraction, the third part, we 
discuss about the precision of approximated line-
segments, and the last part, we show resulting speed-up 
and discussion.  
 
2. Reliable line-segments 
 

Let )(pI be the image intensity at pixel location 
),(p yx . The level set of I  is the set of pixels p  with 

intensity equal or greater than λ . 
 

                         })({ λλ ≥= pp IIN   (1) 

 

The boundary of a level set
λ

N is called level line
λ

L . 

One could extract level lines by using a series of 
thresholds (such as λ={0,1,2...255} for an 8-bit image). 
We propose a method that exploits an elementary level-
line property: level sets are included one in another. 
Thus, level lines could be locally juxtaposed but they 
never could cross. Therefore, we propose a simple 
recursive extraction process that tracks groups of level 
lines (the superimposed ones) until they separate. A 
group is called level-lines flow [LLF]. 

 
Definition 1 Let ),(p),,(p yxjiS  be all the level sets 

between any two neighbors pixels ),(p ji  and ),(p yx  
where 1|||| =−+− yjxi . The boundaries associated 
with all these level sets are called level-lines flow 

),(p),,(p yxjiF  
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Where 1),min( ),(p),(p += yxjil IIλ   

And ),max( ),(p),(p yxjiu II=λ  

 
Definition 2 Let )( ),(p),,(p yxjiFCard  be the number of 

level lines in level-lines flow between pixels ),(p ji  and 
),(p yx , called level-lines flow value. 

 
The flow allows treating level-lines by groups. 

Therefore, the extraction process is less time-
consuming. 
 
Definition 3 A Flow Junction is located in every point 
where two different level-lines flows meet.  
 
3. Fast Level-Line Flow Segments Tracking 
 

In this section, we show how level-lines flows could 
be tracked through any junction in the image and 
approximated by line segments. The tracking process is 
performed with 5 steps: 

 
Step 1 consists of computing level-lines flows value 

on every pixel in the image and storing it in a memory 
fM . 



Step 2 consists of scanning each pixel in order to 
track its associated flow. The process begins on each 
point, calculates the current flow Fc and then tracks this 
flow in four different directions (4-connexity), 
determines which of its four neighbors is the successor. 
This tracking process is repeated until the following 
conditions are no more verified.  

 
Condition 1 The successor flow value in the memory Mf 
is greater than zero. 
 
Condition 2 The successor flow Fs includes the current 
flow Fc (the current flow is a subset of the successor 
flow). 

           sc FF ⊆    (4) 
 
The figure 1 (a) shows an example of flow junction 

where F1={Lλ ⁄ λ ∈ [11, 20]}, F2={Lλ ⁄ λ ∈ [6, 10]} and 
F3={Lλ ⁄ λ ∈ [6, 20]}. We found that F1 ⊂ F3 and F1 ⊄ 
F2. Thus, if the current flow is F1, the successor flow is 
F3, not F2. 

In order to obtain all level-lines flows which pass 
through the current pixel. The process has to start in 
two different directions: left turning tracking (λu is on 
the left side of flow) and right turning tracking (λu is on 
the right side of the flow). The current pixel is then at 
the middle of level-lines flow. 

 

 (a) 

F1={Lλ ⁄ λ ∈ [11, 20]} 
F2={Lλ ⁄ λ ∈ [  6, 10]} 
 
 
 
 
 
 
 
                    (b) 

 
(c) 

 
                    (d)  

 
Figure 1. (a) Flow junction (b) Left turning tracking 
direction IL<IR (c) Right turning tracking direction 
IL>IR. 
 

Step 3 When the tracking process stops, in order to 
avoid to track a flow once again for another point, level-
lines flow value in Mf on each analyzed pixel is updated 
by subtracting the current flow value.  

Step 4 At this point, we get a list of pixels that 
corresponds to flow path. In this step, we will 
approximate this list by a line-segment. At the 
beginning of approximation process, we assume that 
this list of pixels could be approximated by only one line 
and then the distance from each pixel to this line will be 
calculated by using equation 5. If the maximum distance 
of these distances is greater than a given threshold, the 
line segment will be cut into two lines at the pixel that 
have the maximum distance. This process will repeat 
until the maximum distance is less than this threshold. 
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Note that the result of this method depends on a 

threshold. We will explain in the next section how to 
choose automatically this value.  

Step 5 consists of calculating the reliability Rl of 
level-lines segments. 

 
)( cl FCardLR ×=    (7) 

 
Where L is the length of level-lines flow. 

 
4. Line-segment precision 

 
In the previous section, we show that line segments 

could be approximated from a list of pixels by 
considering that the distances between each pixel in the 
list and line segment are less than a given threshold. In 
this section, we propose an automatic method to find the 
optimum threshold Dopt. In order to determine this 
threshold, we define the following terms: 
 
Definition 4 Let ),(p 00

)( yxmP  be set of pixels located at 

the distance m, far from pixel ),(p 00 yx , where ),(p 00 yx  
is a pixel in image space.  
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Definition 5 Let ),(p 00

)( yxmG  be set of pixels associated 

to ),(p 00
)( yxmP . 
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Where ),(p),(p 0000
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And ∞= ...1n         
 

Definition 6 Let ),(p 00
)( yxmL  be set of lines in different 

degrees around ),(p 00 yx , which is represented by 

),(p 00
)( yxmG .  
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Definition 7 Let ),(p 00
)( yxmθ  be set of possible angles 

between any lines in ),(p 00
)( yxmL .  
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Where nmmnmi ,...,)2(,)1( −−=  
  And  nmnnj )1(,...,2, −=                  
 
The figure 2 (a) shows )(mG  and )(mL  in image at 

pixel ),(p 00 yx , where m=3. 
There are two properties according to these 

definitions: 
 

Property 1 For each value m , an image could be 
discretized with a finite number of angles. 
 
Property 2 The more the value of m  is large; the more 
the value of )(mθ  is small.   

 
From these definitions, we found that a pixel ),(p ji  

in )(mG could be a part of three possible lines. The first 
is the line that passes though itself, the second is the 
nearest line on the left and the last is the nearest line on 
the right. 

 
Definition 8 If ),(p ji  is a pixel in )(mG , ),(p ji will be 
a part of a line that the distance between them is 
minimum. 
 

However, we will not consider the first line because 
the minimum distance between them is always zero. 
Therefore, ),(p ji could be a part of only the line located 
on its left side or on its right side. For ),(p ji in every 
direction, we search the maximum distance. Thus, we 
can define the following relations.  
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With equation 13, we found that ),(p jiD  is maximum 

at the pixel )2,2(p mnmn (if m  is even number) and at 
the pixel )2)1(,2)1((p nmnm +− ) (if m  is odd number). 
If we assume that we can represent lines at 
pixel ),(p 00 yx in very directions, it means that θ(m) is 
near to zero (θ(m)→0). Therefore, m is near to the 
infinity (m→∞). 

 

  
(a) 

  
(b) 

Figure 2. (a) shows )(mG  and )(mL  in image where 

3=m  (b) the minimum distance between pixel ),(p ji  
and two beside lines. 
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From equations 14 and 15, we found that pixel 
),(p ji  could be a part of line that the maximum 

distance between them is 2 , which could be 
considered as the optimum threshold Dopt. 



The figure 3 (a) is an image (with tracking result) 
that represents 32 lines in different directions around a 
point. The angle between two lines is 11.25 degrees. 
The figure 3 (b) shows histogram of lines according to 
the thresholds between zero and two. It show that if the 
threshold value is greater than 1.42, we can track 32 
lines, which is the optimum number. The figure 3 (c) 
show histogram of lines according to the angles between 
0 and 360 degree at threshold value 1.42, we found that 
each line can represent very well its direction. Like we 
can see that at the same degree 276, we have two lines. 
The figure 3 (d) show histogram of lines at threshold 
value 1.62, we found that there is only one line at 276 
degree and the other line at 275 degree. It means that 
we have error of lines angle at this threshold. According 
to a series of experimental, we found that the optimum 
threshold is 1.42. 

 

  

  

 

 
Figure 3. (a) Result of line extraction (b) Total number 
of extracted lines according to threshold distance value 
(c) histogram of angles using a distance threshold equal 
to 1.42 (d) histogram of angles using a distance 
threshold equal to 1.6 
 
5. Multi-Resolution Line-Segments 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  



  

  
Figure 5.  Shows  
6. Benchmark 

 
The theoretical complexity of such king of 

algorithms, very image-dependent, can’t be expressed 
easily. So, we decided to perform a benchmark, in order 
to estimate the impact, the speed-up, of the Flow 
optimization. We have tested different kind of images: 
outdoor natural image (parking), indoor classical 
images, (corridor & desk), synthesis image and high-
textured image (leaves). 

- Outdoor natural image (parking), for future 
application, 

- Indoor classical images, (corridor & desk) for 
autonomous robot navigation, 

- Synthesis image, for execution time low bound 
estimation, 

- High-textured image (leaves) for high bound 
estimation. 

The evaluation has been done on a Pentium 4, 2.4 
Ghz, we used Intel 8.0 compiler, 75 % faster than 
Microsoft compiler. We prevent polluted measures from 
OS by running the benchmark in a loop and removing 
polluted results. We provide the execution time in ms 
and also the Cycle Per Points figure (cpp which is a 
frequency and image size independent figure) for both 
classical algorithm and the new algorithm 
 

Name Size Org(ms) New(ms) Speed
-up 

Parking 640x480 1812   210 8.6 
Corridor  256x256 953   62 15.4 
Desk  256x256 796   60 13.3 
Rays  256x256 3735   9 415 
Leaves  256x256 5969   190 31.2 

Table 1. Execution time (ms) 
 

Name Size Org (cpp) New (cpp) 
Parking 640x480 14156   1641 

Corridor  256x256 34900   2271 
Desk  256x256 29150 2197 
Rays  256x256 136780   330 
Leaves  256x256 218591   6958 

Table 2. Execution time (cpp) 

We can notice, that the speed-up is very important: 
from 8 up to 15 for natural images, and 30 for high 
textured image. Such kind of results proves the LLF 
algorithm modification. 

From a qualitative point of view, the cpp figures are 
very similar for natural image. This is also an important 
result for any embedded algorithm: the capability to 
predict, or to get a reasonable average execution time. 
More tests should be done to get a fine prediction, but 
this first result is interesting.  

From a quantitative point of view, the gap to real-
time execution is not so far. We expect to get a real-time 
implementation with a State of the Art or, at least, the 
next generation of RISC processor. High-end embedded 
processors like Texas Instrument DSP C64 should also 
provide enough CPU power. 

 

  

  

  



  
Figure 4.  Shows the results of algorithm. 

 
7. Conclusion 

 
In this paper, we have introduced new algorithm for 

level lines extraction, based on flow computation called 
level-lines flow, which robust to contrast changes. We 
propose a recursive process for tracking the level-lines 
flow through flow junctions in image. The extracted 
level-lines flows are precisely approximated by sets of 
line-segments that could be used as a reliable basic 
feature for many applications such as motion analysis or 
stereovision. 

The benchmark using representative images for usual 
applications show a speed-up of 8 up to 15. Such kind of 
results represents an advance for a real-time 
implementation. 

 
 
 
 

8. References 
 

[1] S. Bouchafa, Motion detection invariant to contrast 
changes. Application to detecting abnormal motion in 
subway corridors, PhD thesis., University Paris 6, 1998. 
[2] S. Bouchafa and B. Zavidovique, “Cumulative level-
line matching for image registration,” ICIAP, p. 176, 
September 2003. 
[3] V. Caselles, B. Coll, and J. Morel, “Topographic 
maps and local contrast changes in natural images,” 
International Journal of Computer Vision, vol. 33, no. 
1, pp. 5–27, September 1999. 
[4] P. Monasse and F. Guichard, “Fast computation of a 
contrast-invariant image representation,” IEEE Trans. 
on Image Proc., vol. 9, no. 5, pp. 860–872, 1998. 
[5] C. Ballester, E. Castan, M. Gonzalez, and J. Morel, 
“Contrast invariant image intersection,” C.M.L.A, no. 
9817, 1998. 
[6] J.L.Lisani, P. Monasse, and L.I. Rudin, “Fast shape 
extraction and applications,” C.M.L.A,, no. 2001-16, 
2001. 
[7] J. Froment, Image compression through level lines 
and wavelet packets, Wolters Kluwer Acad. Pub., 2001. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


