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1 Introduction

By their universal character, general purpose micro-processors may be used to
simulate arti�cial neural networks. However, until now, they were not capable
to perform these simulations in real-time. On the other hand, the computational
power of these processors has tremendously increased recently. Thus, one may
wonder whether up-to-date general purpose micro processors can simulate neural
networks in real-time.

To answer this question, we need to evaluate the performances of these ar-
chitectures for the simulation of neural networks.

To realize this evaluation we have developed an original methodology [6]
which can predict the simulation time of a neural network on an electronic
architecture. This prediction is based on an analytic model of the architecture
performances.

2 Real time

Neural networks are often used in real-time applications. Such applications are
for example the recognition of the amount of a bank check or of a zip postal
code. In these applications the simulation time is hard limited. In this article
we have taken a time constraint of 40 ms, which correspond to the CCIR video
rate.

3 Neural Nets models

In this article we consider the two most used kind of neural networks, which
are the Multi-Layer Perceptrons (MLP) and the Radial Basis Function networks
(RBF).

To determine if general purpose micro-processor can perform real-time sim-
ulation of arti�cial neural networks, we simulated two neural nets: a MLP called
LeNet and a RBF called Rbf3.
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3.1 LeNet

Lenet is a TDNN Multi-Layer Perceptron with 96522 local connections, 1920
full connections and 4365 neurons. Its function is to recognize handwritten digits.
It was developed by Y. Lecun in the AT&T laboratories [8].

3.2 Rbf3

Rbf3 [6, 5] is a Radial Basis Function network. Its 3 layers include respectively
256, 10 and 4 neurons, and it uses the Mahalanobis distance. This distance is
a very hard benchmark because the number of computations increases as the
square of the number of neurons in the input layer.

4 Evaluation

To determine the interest of general purpose micro-processors for the real-time
simulation of neural networks, we have developed an original methodology for
the evaluation and prediction of the processors performances [6].

4.1 Method

The usual method to predict the simulation time of neural networks on an elec-
tronic architecture is based on the measure of an average speed S for the con-
nections processing. Then the simulation time of a MLP or a RBF with C
connections is simply taken as S � C. We have demonstrated in [7] that this
method cannot be applied for a general neural network architecture because it
leads to very high predictions errors. Thus we introduced a new method for this
prediction.

Description This methodology is based on the extraction of an analytical model
for the computational primitives of the neural network model. These primitives
are the basic mathematical operations that de�ne the model.

The extracted analytical model is a mathematical function that provides
the simulation time of a neural network depending on some neural network
parameters like the number of neurons or the kind of connections (local or full).
It also depends on some hardware parameters like the cache size or the clock
frequency.

To get the total simulation time of the a neural network, we simply accumu-
late the simulation times given by the analytical model for all the primitives.

Primitives for MLP The equations 1 and 2 give the primitives associated to
the MLP model.



3

g
�
Xj(j2Ei)

�
=
X
j2Ei

Xj �Wij (1)

f (Vi) = m
1� e��Vi

1 + e��Vi
(2)

m determines the range of the neuron state, included in [�1 : 1], and � is
the slope of f .

Primitives for RBF The equations 3 and 4 give the primitives associated to
the RBF model, when the Mahalanobis distance is used.
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� characterizes the in
uence zone of the neuron. ��1i is the inverse of the
covariance matrix associated to the neuron i.

Number of primitives In a general purpose micro-processor, there are two
major kinds of computation units, an integer unit and a 
oating-point unit. Thus
we have evaluated these two units and we have programmed the four primitives
described above in an integer and in a 
oating-point version: this leads to eight
primitives.

4.2 Analytical models for a general purpose micro-processor

To determine the execution time of a primitive P , we �rst determine the total
NumBer of Instructions needed to simulate this primitive NBIP (k; l; : : : ;m; n),
as a function of the sizes (k; l; : : : ;m; n) of the layers (w; x; : : : ; y; z). This step
can be realized by an analysis of the assembler code of the programmedprimitive.

Thanks to this function, we can estimate the number of Cycles Per Instruc-
tion CPIP for this primitive, with the formula:

CPIP (k; l; : : : ;m; n) =
T � F

NBIP (k; l; : : : ;m; n)
(5)

where F is the CPU frequency and T is the simulation time measured for this
primitive. To approximate the CPIP , we have made numerous simulations of
the primitives, measured the simulation time and determined the CPIP with
the formula 5.

At this point we have two functions: a function NBIP which provides the
number of instuctions for the primitive executed as a function of the sizes of the
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layers of a neural network, and a function CPIP which provides the number of
cycles per instruction for the primitives as a function of the sizes of the layers
of a neural network.

Let us take now a neural network characterized by the primitives p 2 �
and by the layers (ap; bp; : : : ; cp; dp) for the primitive p. We can compute the
simulation time TS of this neural network with the formula:

TS = 1=F �
X
p2�

(NBIp(ap; bp; : : : ; cp; dp) �CPIp(ap; bp; : : : ; cp; dp)) (6)

With the equation 6, we can predict the simulation time of any neural network
without programming it on the architecture. Moreover this analytical model
depends on the size of the layers but also on the parameters of the architecture
like the clock frequency, the cache size, etc : : : . Then if we change the value of a
parameter, for example the clock frequency, we can compute the simulation time
of a neural network on a new architecture which is a minor modi�cation of the
architecture originaly evaluated. Thus we can forecast now the performances of
a processor which will be introduced in the future.

But it's hard to give a deterministic analytical model for the architecture
of a general purpose micro-processor, because it includes complex mechanisms.
Such mechanisms are:

{ Memory management including two or three memory cache levels.
{ Instruction 
ow sequencing mechanism with branch prediction.
{ Out of order execution of the instructions.

These mechanisms introduce non deterministic execution times of the in-
structions 
ow, because they depend on the values and the nature of the data.
The consequences of these features are that the estimation of the CPIp given
by equation 5 show a very large dispersion.

To overcome this problem we estimate the range of CPIp thanks to two
extrema, CPIminp and CPImaxp . These two values are de�ned such as for any
network:

CPIminp � CPIp(k; l; : : : ;m; n) � CPImaxp

With these two extrema, our methodology gives two predicted times, a max-
imum predicted time and a minimum predicted time. Then if the maximum
predicted time is smaller than the real time constraint we can say that the neu-
ral network is simulated in real-time.

5 Evaluation of Sparc and X86 family processors

To determine the analytic models of the Sparc andX86 processors, we used two
commercial C language compilers: Sun Microsystem CC-4.2 compiler for Sparc
and Microsoft Visual C++ 5 for X86.
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5.1 The processors : SuperSparc, UltraSparcII

Firstly we evaluated two processors of the Sparc family: the SuperSparc and
the UltraSparcII.

Hardware In this section, we describe the hardware architecture of the evalu-
ated processors. These descriptions are derived from [9, 2, 1].

The Sparc 1 architecture is derived from the Berkeley university studies
between 1984 and 1987. It's a RISC architecture owned by Sun microsystems.
The two evaluated processors characteristics are:

{ SuperSparc complies to the Sparc V8 norm. It is a three degree super-
scalar processor. It has one integer unit with two ALU, one 
oating-point
unit, one memory management unit, a 16 KB L1 data cache and a 20 KB
L1 instructions cache. Its clock frequency is 50 Mhz, it has 3.1 millions of
transistors in a BiCMOS 0,6 �m technology.

{ UltraSparcII complies to the Sparc V9 norm. It is a four degree super-
scalar processor. It has one integer unit with two ALU, one 
oating-point
and VIS 2 graphic unit with 5 processing units, one memory management
unit, a 16 KB L1 instructions cache and 16 KB of L1 data cache. It has a
L2 cache, its size is in the range [512 KB ,16 MB]. Its clock frequency is 250
Mhz, it has 3.8 millions of transistors in a 0,29 �m CMOS technology.

5.2 The processors X86

The X86 processors family is derived from an Intel seventies CISC architecture.
But to compete with other micro-processors in scienti�c applications, there is
with Pentium micro-processors an evolution towards a RISC internal micro-
architecture.

Hardware

{ PentiumPro is a CISC-RISC micro-processor, the �rst stage of the pipeline
is dedicated to translate CISC instructions into 118 bits RISC-like micro-
instructions. This micro-processor has an integer unit with two ALU, a

oating-point unit, a memory management unit, 8 KB of L1 instructions
cache and 8 KB of L1 data cache. There is, at the same CPU clock fre-
quency, a 256 or 512 L2 uni�ed cache. CPU clock is 200 MHz.

{ Pentium II is an improvement of the PentiumPro. There are MMX 3

graphic units, the sizes of L1 caches are increased up to 16 KB, the L2 cache
is only running at 2/3 of the CPU clock with and its size is not limited to
512 KB. There are 7.5 millions of transistors in a 0,28 �m CMOS technology
and a CPU clock of 266 MHz.

1 Scalable Processor ARChitecture
2 Visual Instructions Set
3 MultiMedia eXtension
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5.3 Analytical models

We extracted the analytical models for the eight primitives and for the four
processors. We cannot give in this article all the models, but we give the example
of the PentiumII processor for the interger Mahalanobis distance primitive in
table 1. The range of CPImahai is:
CPIminmahai = 1:1311 and CPImaxmahai = 3:5772.
The function h is de�ned as:

h(x) = 1 if x > 0 else h(x) = 0

Primitives Analytical model

Mahalanobis (1:1311=F ) � (39 + h(size] � (9 + 12 � size)
Distance +h(size� 3) � (11 + b size

4
c � (9 + 19 � size))

Integer version +h(size%4)) � (7 + (size%4) � (8 + 9 � size)))
for CPImin

mahai

Mahalanobis (3:5772=F ) � (39 + h(size] � (9 + 12 � size)
Distance +h(size� 3) � (11 + b size

4
c � (9 + 19 � size))

Integer version +h(size%4)) � (7 + (size%4) � (8 + 9 � size)))
for CPImax

mahai

Table 1. Example of PentiumII analytical models, where F is the clock frequency

With all the analytical models we can perform both evaluation and predic-
tion.

5.4 Evalution and Prediction

We present here the predicted and measured simulation time of the two neural
networks, LeNet and Rbf3.

Sparc family The table 2 shows that measured times are smaller than maxi-
mum predicted time and larger than minimumpredicted time: this con�rms the
validity of our methodology.

For the real time simulation of the neural networks, this table shows that the
SuperSparc processor can not satisfy the 40 ms time constraint.

But on the other hand, the UltraSparcII can manage the real time simu-
lation of LeNet. We have a maximum time of 8.3 ms for the integer version and
a maximum time of 14.621 ms for the 
oating-point version. Because LeNet
is one of the biggest MLP ever designed, we can state that current MLPs can
be simulated in real-time on general purpose micro-processors, when the time
constraint is 40 ms.

However, the table 2 shows that the real-time simulation of Rbf3 cannot
always be achieved
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Processor Neural Measured Minimum Maximum
Network Time Predicted Predicted

Time Time
(in ms) (in ms) (in ms)

SuperSparc Lenet integer 37,424 22,939 46,005
Lenet 
oat 51,199 24,465 56,593
rbf3 integer 230,697 144,903 259,369
rbf3 
oat 211,703 190,944 255,853

UltraSparcII Lenet integer 4,578 2,728 8,359
Lenet 
oat 11,709 7,380 14,621
rbf3 integer 43,206 30,500 65,395
rbf3 
oat 37,619 21,821 46,244

Table 2. Predicted and mesured simulation time for LeNet and Rbf3 on SuperSparc
and UltraSparcII processors

The results shown in table 2, demonstrate the impressive evolution of general
purpose micro-processors. The SuperSparc, introduced in 1992, is seven times
less powerful than the UltraSparcII introduced in 1997. This evolution is not
only a consequence of the increase of the clock frequency, as the ratio between the
two clock frequencies is only equal to �ve, but also a consequence of architecture
improvements like memory cache management or duplication of computional
units.

If this evolution continues, the integer version of the Rbf3 network could be
simulated in 9.34 ms in year 2002 on a Sparc processor which would be 7 times
more powerfull than the UltraSparcII. Then general purpose micro-processors
could be used for the real-time simulation of RBF with the Mahalanobis distance

Processor Neural Measured Minimum Maximum
Network Time Predicted Predicted

Time Time
(in ms) (in ms) (in ms)

PentiumPro Lenet integer 3,019 2,751 8,086
Lenet 
oat 37,869 10,853 41,523
rbf3 integer 51,404 17,816 56,346
rbf3 
oat 54,094 20,886 75,583

PentiumII Lenet integer 2,134 2,113 21,252
Lenet 
oat 24,378 7,933 39,046
rbf3 integer 42,800 13,033 48,442
rbf3 
oat 43,238 16,149 54,198

Table 3. Predicted and measured time on PentiumPro et PentiumII
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X86 family Similarly to the Sparc family, the table 3 shows that our methodol-
ogy is valid, and that MLP, can be simulated in real time on these architectures.

6 Predicted performances for future electronic

architectures

Our methodology can evaluate actual electronic architectures, but it can also
predict the simulation time of future evolutions of these architectures. We used
it to predict the simulation time of the neural networks LeNet and Rbf3 on four
possible future evolutions of the UltraSparcII and PentiumII. For the sake
of simplicity, we modi�ed only a parameter: the clock frequency. The prediction
will be pessimistic, because progress in microelectronics technology may lead to
speedup larger than the ratio of the clock frequency as we saw when we compared
the SuperSparc and the UltraSparc.

The four evolutions for which we predict the simulation time of LeNet and
Rbf3 networks are:

{ an UltraSparcII with a 400 MHz clock frequency,

{ an UltraSparcII with a 1 GHz clock frequency,

{ a PentiumII with a 400 MHz clock frequency,

{ a PentiumII with a 1 GHz clock frequency.

The clock frequency of 400 MHz up-to-date as the current generation of
PentiumII have a frequency of 450 MHz, and the UltraSparcIIi a frequency
of 360 MHz.

The 1 GHz frequency will be available before year 2002. This is not a dream,
as said Peter Bannon of Compaq at the MicroProcessor Forum on October 1,
1998. The Alpha EV7 micro-processor, the next generation of Alpha processors
will be operates at more than 1 GHz [4]. Sun announces is in roadmap [3] a new
generation of UltraSparc processor with a frequency of 1.5 GHz in 2002.

The prediction results are shown in table 4.

UltraSparcII PentiumII UltraSparcIII PentiumII

400 Mhz 400 Mhz 1 Ghz 1 Ghz
Neural Maximum Maximum Maximum Maximum
Network Time Time Time Time

(in ms) (in ms) (in ms) (in ms)

LeNet 
oat 9,138 25,965 3,655 10,386
Rbf3 integer 40,871 32,214 16,348 12,885

Rbf3 
oat 28,902 36,042 11,561 14,416

Table 4. Predicted time for UltraSparcII and PentiumII with 400 MHz and 1 GHz
clock frequencies
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This table shows that with 400 MHz and 1 GHz clock frequencies, simulations
of neural networks will possible in real time for the two kind of neural networks
when the time constraint is 40 ms.

7 Conclusion

In this article we propose a new methodology to evaluate and predict the simula-
tion time of MLP and RBF neural networks on general purpose micro-processors.

With this methodology we evaluated two processors family, Sparc and X86
and we demonstrated that the general purpose micro-processors can now simu-
late MultiLayer Perceptrons with a 40 ms real time constraint.

We used also our methodology to predict the simulation time of neural net-
works on two future possible evolutions of Sparc andX86 family, and we showed
that these architectures would simulate Radial Basis Function networks with
Mahalanobis distance in real time with a 40 ms time constraint. They could be
available in the next three years.
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