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Context

I Noise Apperance in bad conditions : Low light, Low contrast

I Physic limitation : Modern sensors quasi-perfect with very low read noise
levels ⇒ Noise = Photon noise.

I Bigger optics :
I Bigger systems.
I Heavier
I More expensive

I Need to propose a new solution : Overcome physics limitation with
software.

I Proposed solution : Embedded real-time Spatial-temporal filter (25 fps).
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State of the art
I Only a few articles on video denoising

I A lot more on image denoising.

I Good displacements estimation needed for robust video denoising [1].

I [Zuo 2016] Existing algorithms very heavy [2].

⇒ Kalman + bilateral method proposed.
⇒ Movement estimation using block matching.
⇒ No timing indicatons for this solution.

I Recent reconsideration for this problem

I VBM3D [3] and VBM4D [4] references for a long time (2007, 2011).
I Visually more efficient new methods:

I VNLnet 2018 [5].
I TOF denoising 2017 [6].
I UNet 2018 [7].

⇒ Issue: Compute time too much important (Patchs + CNN).
I Real-time methods

I STMKF 2017 [8].
I Google 2018 [9].

⇒ Issue : Only for low noise level situations (like video compression).
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Denoising chain : RTE-VD

Stabilization

Dense optical 
flow

Spatial filter

Temporal filter

+ Result

Video Flow

Figure: Main denoising steps.

I Stabilization : Lucas Kanade global approach.

I Dense optical flow : TV-L1.

I Spatial filtering : Separated bilateral filter.

I Temporal filtering : Lateral filter.
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Optimizations
Algorithmic Optimizations

I Various transormations applied for all steps:
I SIMDization (Inefficient vectorization → Code hand-writen in SIMD Neon).
I Multi-task parallelism with OpenMP.
I Operators fusion → Reduce the number of memory access.
I Operators pipeline → Enhanced memory locality.
I Cache blocking → Reduce memory footprint and enhanced memory locality.

I Other transformations more specific to each algorithm.
I Lucas-Kanade stabilization.

I Convolution computation using Integral images (summed area table).
I Parallel computation of the convolution using partial integral images.

I TV-L1 dense optical flow estimation.
I Iterations pipeline (Dasip 2018) [10].
I Fixed number of iterations chosen by studying the convergence speed.
I Unbalanced distribution of the number of iterations between scales (3-20-80).

I Spatial-temporal trilateral filter.
I Approximation using separated filter [11].
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Optimizations
Impact of the optimizations (1/2)

Algorithm Slow 1C Fast 1C Fast 8C speedup

Stab (LK) 6.66 1.59 0.37 ×18
Flow (TVL1) 260.73 107.93 27.59 ×10

Filter 840.08 1.39 0.25 ×3 360

Total 1 107.47 110.90 28.21 ×39

Table: Execution time (ms) and speedup for RTE-VD on AGX CPU.

I Slow 1C : Naive mono core implementation (vectorization on).

I Fast 1C : Fast mono core implementation.

I Fast 8C : Fast 8 cores parallel implementation.

I Mono core gain : ×10.

I Total gain : ≈ ×40.

I Major gain on the filtering due to its approximation with separated filter.

I Optical flow = critical step : 98% total computation time.
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Denoising efficiency (1/2)
I Evaluation on a well known database : Derf’s Test Media Collection.
I Comparison with other state of the art algorithms.

I STMKF: State of the art for real-time methods.
I VBM3D & VBM4D: State of the art for denoising efficiency (slow).
I RTE-VD: This work.

Noise Method crowd park joy pedestrians station sunflower touchdown tractor overall

σ = 20

STMKF 26.25 25.59 28.34 26.66 26.97 28.87 25.37 26.70
RTE-VD 26.38 25.65 30.58 30.98 32.51 30.17 29.38 28.73
VBM3D 28.75 27.89 35.49 34.19 35.48 32.85 31.44 31.34
VBM4D 28.43 27.11 35.91 35.00 35.97 32.73 31.65 31.11

σ = 40

STMKF 20.80 20.75 20.70 20.41 20.70 20.86 19.80 20.56
RTE-VD 22.55 21.64 25.72 27.76 27.87 27.05 25.99 24.85
VBM3D 24.81 23.78 30.65 30.62 30.88 30.21 27.82 27.43
VBM4D 24.65 23.22 31.32 31.53 31.39 30.09 28.09 27.35

Table: PSNR comparison on 7 Derf’s Test Media Collection’s sequences with other
state of the art algorithms.

I Until +7dB over STMKF. Average: +4dB (σ = 40).

I Maximum -6dB under VBM3D/4D. Average: -2.5dB (σ = 40).
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Denoising efficiency (2/2)

Input Noisy STMKF RTE-VD VBM3D VBM4D

Figure: Visual comparison on the pedestrian scene (Gaussian noise: σ = 40).

I Stronger denoising than STMKF.

I Less efficient denoising than VBM3D/4D.

I Weakness on details rendering for background.
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Time and energy consumption (1/3)
Execution time comparison with other state of the art algorithms

I Implementation on various platforms :

Board Process CPU
Fmax
(GHz)

Idle Power
(W)

TX2 16 nm 4×A57 + 2×Denver2 2.00 2.0

AGX 12 nm 8×Carmel 2.27 6.3

NANO 12 nm 4×A57 1.43 1.2

XEON 14 nm 2×10C/20T Skylake 2.20 –

Table: Technical specification of tested platforms.
I Method comparison:

Algorithm Time (s) Platform

STMKF 0.004 5 Xeon
RTE-VD (this work) 0.009 7 Xeon
VBM3D 2.0 Xeon
VBM4D 45 Xeon

STMKF 0.015 AGX
RTE-VD (this work) 0.037 AGX

Table: Time per qHD images (960×540 pixels).

I 200× faster than VBM3D.

I 4600× faster than VBM4D.

I 2.5× slower than STMKF.

I Embedded real-time in qHD
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Time and energy consumption (2/3)
Time vs energy efficiency: Dynamic consumption

Figure: Time/energy efficiency of RTE-VD on CPU for various frequencies (Edynamic).
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Time and energy consumption (3/3)
Time vs Energy efficiency: Dynamic + static consumption

Figure: Time/energy efficiency of RTE-VD on CPU for various frequencies (Etotal).
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VIRTANS : Denoiser Prototype

Figure: VIRTANS : Video Real-Time Algorithm : Noise Suppression.

I TX2i based Architecture.
I Real-time 480× 270 pixels video denoising.
I SDI input / HDMI Output.
I Ethernet communication with LHERITIER Cameras.
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Conclusion & futur works

I Conclusion

I Introduction to a new Real-Time Embedded Video Denoising algorithm

I Slower than STMKF but denoising a lot more efficient

I Embedded real-time perfomances for qHD videos (960×540 pixels)

I Energy consumption study: positioning depending on the targeted system

I RTE-VD based real-time video denoiser : VIRTANS

⇒ RTE-VD is well positioned for speed/accuracy tradeoff

I Future works

I GPU implementation and hybrid CPU/GPU computation

I 32 - 16 bits hybrid computation
I Reduce VIRTANS form factor even more.
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Thank you !
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Optimizations
Impact of the optimizations (2/2)

Figure: Impact of TV-L1 optimizations on speed and energy on TK1’s CPU depending
of the image size. Lower is better.

Version Base II Pipe MA SIMD OMP8 Total
Time (ms) 1742 56,0 33,5 29,0 9,2 1,6 –
Speedup ×1 ×31 ×1, 75 ×1, 2 ×3, 1 ×5, 9 ×1120

Table: Impact of LK Stabilization optimizations for fullHD images on AGX’s CPU.

1 / 2



Backup : Time and energy consumption
Time vs energy efficiency

Table: Best configurations for 25 fps

Configuration
Energy

(nJ/pix)
Time

(ns/pix)
Max size
(#pix)

Freq
(GHz)

NANO min energy
NANO min time

616 311 358 1.4

TX2 min energy 1046 242 406 1.2
TX2 min time 1209 165 492 2.0
AGX min energy 683 114 592 1.4
AGX min time 832 70 754 2.3

I NANO : the most energy efficient

I AGX : the fastest and the most energy efficient

I TX2 : Penalized by its process but faster than NANO

I Greatest image at 25 fps : 754× 754 pixels
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