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Abstract

Efficiently using the hardware capabilities of the Cell
processor, a heterogeneous chip multiprocessor that uses
several levels of parallelism to deliver high performance,
and being able to reuse legacy code are real challenges for
application developers. We propose to use Generative Pro-
gramming and more precisely template meta-programing to
design an Embedded Domain Specific Language using
algorithmic skeletons to generate applications based on
a high-level mapping description. The method is easy to
use by developers and delivers performance close to the
performance of optimized hand-written code, as shown on
various benchmarks ranging from simple BLAS kernels to
image processing applications.

KEYWORDS: Cell processor, Generative Programming,
C++ meta-programing , algorithmic skeletons, Embedded
Domain Specific Language

1. Introduction

Multi-core processors, either homogeneous or heteroge-
neous, are the response to the increasing demand of pro-
cessing power and the energy efficiency issues. The Cell
processor[19] is a good example of such an heterogeneous
architecture. Thanks to both its thread level and SIMD par-
allelism, high peak performances are reached in various ap-
plication domains[3, 23]. But using efficiently these levels
of parallelism is not trivial. Even with a large collection
of tools[18, 17], the development times are significantly
longer than on conventional multi-core architectures. The
main problem is not to fully exploit the SIMD SPE per-
formance but to choose an optimal mapping for the con-
sidered application. In [20], several parallelization models
have been investigated for the Cell: the results show that the
mapping strategy greatly impact performance. Alas, some

specific programming aspects, such as explicit DMA1 trans-
fers, make it difficult to experiment with different mapping
strategies during the application design process.

Designing a tool to facilitate the programmer tasks on
such architectures is not straightforward. It should provide
a way to integrate arbitrary user-defined functions and an
expressive way to combine them to design the application
mapping. The mapping description issues can be solved
using high-level models like stream processing [10], paral-
lel design patterns [16] or algorithmic skeletons [4]. Main
stroke against such methods is that high-level libraries are
often designed using run-time polymorphism or other id-
ioms which induce a large runtime overhead. To limit this
overhead, Generative Programming appears as a growing
trend [22]. Generative Programming is a set of techniques
and tools for designing and implementing software com-
ponents which are meant to be combined to generate spe-
cialized, highly optimized systems[6]. Among the various
idioms related to Generative Programming, meta-progra-
ming allows the developers to write code that can analyse,
transform and generate code fragments at compile-time.

An application of those idioms are the design of Embed-
ded Domain Specific Language . By definition, a domain
specific language (DSL) is a declarative languages which
allow the expression of a familly of related problem as pro-
grams that are easy to understand, reason about, and main-
tain. On the other hand, there may be a significant over-
head in creating the infrastructure needed to support a DSL.
To solve this problem, methodologies were described for
building embedded domain specific languages (EDSL), in
which a DSL is designed within an existing general pur-
pose programming language[14]. In this methodology, the
embedded language is built upon the syntax of a given host
language and extends its semantic to fit the domain needs.
Meta-programing then appears as a way to boost the perfor-
mance of such EDSL by leveraging most of the mashalling
code at compile-time.
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In this paper, we propose a C++ library named SKELL
BE that provides a simple way to design application map-
pings based on algorithmic skeletons and seamlessly sup-
port arbitrary user-defined functions. To do so, we rely
on various idioms of meta-programing in C++ like code in-
trospection and partial evaluation to design an Embedded
Domain Specific Language for applciation mapping with a
high level of expressiveness and performance close to hand-
written code. The rest of this paper is organized as follows.
Section 2 presents the API provided by SKELL BE . Sec-
tion 3 introduces the principles of meta-programing and the
specific idioms used in our tool. Section 4 presents the ex-
periment results for the different benchmarks.

2. The SKELL BE library

2.1. Motivation

The concept of parallel skeletons[4] is based on the ob-
servation that, in a large number of applications, parallelism
is expressed in the form of a few recurring patterns of com-
putation and communication. In general, every application
domain has its own specific skeletons. In computer vision,
parallel skeletons mostly involve slicing and distributing
regular data while parallel exploration of tree-like structures
is common in operational research applications. The main
advantage of this parametrization of parallelism is that all
low-level, architecture or framework dependent code is hid-
den from the user, who only has to write sequential code
fragments and instantiate skeletons. The skeleton approach
thus provides a decent level of organization.

Another interesting feature of skeletons is their ability to
be nested. If we look at a skeleton as a function taking func-
tions as arguments and producing parallel code, then any
instantiated skeleton is eligible as being another skeleton’s
argument. Skeletons are thus seen as higher-order functions
in the sense of functional programming. At the user’s level,
building parallel software using algorithmic skeletons boils
down to simply combining skeletons and sequential code
fragments.

When programming the Cell processor, the lim-
ited amount of communications channels and the DMA
API complexity make building a proper communication
schemes between PPE and SPEs or between SPEs a real
challenge. In this case, the use of skeleton lessen the
amount of communications pattern to write as their mostly
known in advance and can be chosen so that limitations can
be circumvented. Those considerations lead us to choose a
proper skeleton set and programming model for the SKELL
BE library.

2.2. Supported skeletons

Various Parallel Skeletons have been proposed in the lit-
erature covering both control-driven or data-driven paral-
lelism. If there is no standard list of skeletons, a small com-
mon subset can be proposed:

• The SEQ skeleton encapsulates sequential user-defined
functions to use them as parameters of skeletons;

• The PIPELINE skeleton that is functionally equivalent
to the parallel composition of functions;

• The MAP skeleton models regular data parallelism in
which data are sliced, sent to slave processing elements
and then merged back;

• The FARM skeleton models irregular, asynchronous
data parallelism based on an arbitrary load-balancing
strategy.

The architectural specificities of the CELL processor in-
duces various software design choices that we sketched in
[20]. Among those, the ability to chain kernels over a single
SPE and the ability to replicate a given sequence of kernels
over groups of SPE have the biggest impact on the execu-
tion times of the applications. Those considerations lead
to the following set of skeletons to be supported by SKELL
BE :

• The SEQ and PIPELINE skeletons, defined earlier;

• The CHAIN skeleton models the sequential call of two
user defined functions on the same SPE;

• PARDO skeleton models independent tasks that are all
executed in parallel. This skeleton both supports ad-
hoc parallelism[4] and provides a simple way to per-
form the replication of kernels over sets of SPEs.

This subset is small enough to limit the problem of com-
plex communications schemes but large enough to support
a large variety of mapping strategies.

2.3. SKELL BE programming model

In SKELL BE , we still consider the Cell processor as an
asymmetric machine and propose an appropriate program-
ming model. In this model, an application is composed of
two sets of source files : one for the PPE and one for the ker-
nel description on the SPEs. From the PPE point of view, an
application may call a computation kernel that is compiled
and run on the SPE as a classic stream processing applica-
tion (listing 1).
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Listing 1. Sample PPE kernel call
1 #include <skell.hpp>
2 SKELL_KERNEL(sample,(2,(float const*,float*)));
3

4 int main(int argc, char** argv)
5 {
6 float in[256], out[256];
7

8 skell::environment(argc,argv);
9 sample(in,out);
10

11 return 0;
12 }

A kernel is defined by the SKELL KERNEL macro
as a function prototype in which arguments passed by
reference are considered as outputs of the kernel, while
arguments passed by value or by const references are
considered as inputs of the kernel. Line 9 shows how
this function can be called as a normal function. At
runtime, the initialization of the Cell processor made by
the call to skell::environment starts a group of SPE
threads and make them wait for an upcoming kernel call,
thus reducing the overhead of threads creation. Threads
termination is similarly performed at the end of the main
function scope.

From the SPEs point of view, each SPE is part of a
8 nodes cluster supporting point-to-point communications.
The applications are designed using composition of skele-
tons instantiated with user defined functions that access
the PPE as a remote memory from which data can be
asynchronously read or written through either used-defined
DMA calls or one of the functions provided by SKELL
BE (listing 2).

Listing 2. Sample SPE kernel definition
1 #include <skell.hpp>
2

3 void sqr()
4 {
5 float in[32],out[32];
6

7 pull(arg0_,in);
8 for(int i=0;i<32;++i) out[i] = in[i]*in[i];
9 push(arg1_,out);
10

11 terminate();
12 }
13

14 SKELL_KERNEL(sample,(2,(float const*,float*)))
15 {
16 run( pardo<8>( seq(sqr) );
17 }

This sample code illustrates various things:

• the SKELL KERNEL macro generates the stub main
function and the introspection code required by SKELL
BE ;

• The run function that is used in the kernel function
to construct an application using the pardo and seq
skeleton constructors;

• The argN object that provides a pervasive access to
the N th kernel argument stored in the PPE main mem-
ory;

• The pull and push functions that give an asyn-
chronous access to the PPE main memory address
space. Those functions actually deduces from their ar-
gument type the best way to retrieve a piece of data
from the main memory and write it to a given SPE
variable. By default, those functions use a static slic-
ing of the PPE variable based on the number of SPE
used by the kernel and size of the local variable used
for the transfer. Overloads are provided to define more
complex usage;

• The terminate function that triggers the comple-
tion of the kernel. It is usually called once per kernel
after all the data stored in the main memory have been
processed.

In term of functionality, SKELL BE kernels arguments
may be of any kind of default-constructible types. However,
an explicit allocation is needed for pointers, which may hin-
der performances. A good strategy is then to use data con-
tainers which pull data from PPE using an application spe-
cific strategy like tiling or some variation of software cache.
Table 1 sums up the API of SKELL BE .

2.4. Related Work

State of the art skeleton-based parallel programing li-
braries are built on top of languages like C, C++, JAVA,
OCaml or haskell. Considering our architectural target, the
most representative works are :

• BlockLib [1] is a C library using preprocessor macros
to generate code for the Cell processor using a small
subset of skeletons and support some vectorization
primitives. Benchmarks show that code written using
BlockLib perform as well as hand-written code at the
cost of a relatively verbose macro-based interface.

• MUESLI, the Münster Skeleton Library [15] is a
C++ skeleton library proposed by Herbert Kuchen.
MUESLI generates a process topology from the con-
struction of various skeleton classes and to use a dis-
tributed container to handle data transmission. This
polymorphic C++ skeleton library is interesting as it
proposes a high level of abstraction but stays close to
a language that is familiar to a large crowd of develop-
ers. Moreover, the C++ binding for higher order func-
tions and polymorphic calls ensure that the library is
type safe. The main problem is that the overhead due
to dynamic polymorphism is rather high (between 20
and 110 % for rather simple applications).
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Application handling

environement(argc,argv) Application start-up
rank() Return the current SPE PID
terminate() Signal the end of the

data stream and terminate
the application

run(skeleton) Execute a skeleton application

Skeletons constructors

seq(f) Turn an user-function in
a skeleton task

operator,(s1,s2)
chain(s1,. . .,sn) Sequential composition constructor
chain<N>(s)
operator|(s1,s2)
pipeline(s1,. . .,sn) Pipeline constructors
pipeline<N>(s)
operator&(s1,s2)
pardo(s1,. . .,sn) Pardo constructors
pardo<N>(s)

Data transfer

pull(argN,v,sz=0,o=0) Retrieves sz elements of
the Nth data from the
PPE main memory and store it
in v with an offset o

push(argN,v,sz=0,o=0)) Send sz elements of the
data v to the Nth data
in PPE main memory with an
offset o

Figure 1. SKELL BE User Interface

• The ESkel Library [4] proposed by Murray Cole rep-
resents a concrete attempt to embed the skeleton based
parallel programming method into the mainstream of
parallel programming. It offers various skeletal paral-
lel programming constructs which stay similar to MPI
primitives and which are directly usable in C code.
However, eSkel low-level API requires to take care of
internal implementation details.

Compared to those tools, SKELL BE provides a few ad-
vantages. As we’ll see later, SKELL BE performances are
only a few percent less than hand-written code compared
to the large overhead introduced by MUESLI and its run-
time polymorphism implementation. In term of interface,
SKELL BE is lighter than the macro-based BlockLib and
more type-safe than eSkel that relies on untyped pointers.

3. SKELL BE Implementation

Developing an efficient yet expressive skeleton-based
parallel programming library is a rather complex task. Vari-
ous attempts show that the trade-off between expressiveness
and efficiency is a critical parameter to the success of a li-
brary. While polymorphism seems to be the tool of choice
to express the relationship between skeletons and function

objects, experience demonstrates[15] that the overhead in-
duced by its runtime support may hinder the application
overall performance. In the case of skeletons, the run-time
polymorphism is in fact mostly unneeded. By design, an
application expressed as a combination of nested skeletons
has its structure entirely known at compile-time. The idea
is then to find a proper way to exploit this compile-time in-
formation in an useful way.

The problem can be solved by a perspective shift. Let’s
consider skeleton constructors as keywords of a small,
declarative domain-specific language2. The informations
about the application to generate are then given by the op-
erational semantic of those constructors. This strategy is
classically used by parallel skeleton library like P3L[2] or
Skipper[21]. In our case, the challenge is to find a way to
define such a language as an extension to C++ –defining an
EDSL – without having to build a new compiler variation
but by relying on meta-programing .

Meta-programing is a set of techniques inherited from
Generative Programming that enable the manipulation, gen-
eration and introspection of code fragment within a lan-
guage. By comparison, when a function is executed at run-
time to produce run-time values, a meta-function operates
at compile-time on code fragment to generate new, more
specialized code fragment to be compiled. The execution
of a meta-programing enabled code is then done in two
passes. In C++ , such a system is carried out by template
classes and functions. By using the flexibility C++ operator
or function overloads and the fact that C++ templates can
achieve arbitrary compile-time computation, we can evalu-
ate at compile-time the structure of a parallel application
described as a combination of parallel skeletons construc-
tions. To do so, the skeleton structure extracted from the
application definition has to be transformed into an interme-
diate representation based on a network of sequential pro-
cesses. For SKELL BE , the main difficulties were to embed
the skeleton constructor as language element, generate
code over SPEs and to perform arguments transfer be-
tween PPE and SPEs.

3.1. Generating code over SPEs

Implementing a Embedded Domain Specific Language in
C++ requires to find a proper way to retrieve non-trivial in-
formations about a given expression abstract syntax tree in
an usable form. This is usually done by using a technique
known as Expression Templates [25]. Expression Templates
use function and operator overloads to build a light-weight
representation of an expression abstract syntax tree. The
tree structure itself is a complex template type structured as
a linear representation of the tree. Informations about the
expression terminals are stored as references in the actual

2as opposed to a general purpose language
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AST object. This temporary object can then be passed as
arguments to other functions that will analyse its type and
extract the needed informations for the task at hand, thus
performing partial evaluation [11, 26, 13].

To turn a skeleton AST into a proper code, we have to
transform the tree structure into a network of process. To do
so, we reuse the operational semantic defined in [9] and turn
them into meta-programs [24] able to generate a static list
of processes. Each SKELL BE skeleton constructor generate
a stateless object which type encodes the skeleton structure.
As an example, here is the actual code for the pipe oper-
ator (fig. 3). We notice that no computation is done at this
point but that the skeleton structure is itself embedded in the
return type.

Listing 3. The pipe operator
template<class LS, class RS>
expr<pipe, args<LS,RS> >
operator|( LS const&, RS const& )
{
return expr<pipe, args<LS,RS> >();

}

This template type is now usable with our meta-functions.
These meta-functions will generate structure represent-
ing process network. The run function now call meta-
function to parse the template AST and generate the proper
process network type instantiation. Using template
partial specialization as a pattern matching mechanism, we
apply the proper semantic rules on each skeleton encoun-
tered in the AST. Once defined, this network is turned into
code by iterating over its node and generating a sequence
of SPMD code fragment in which the process instructions
list is executed. This is done by building a tuple of function
objects which contains the code of small scale operations
(calling a function, sending or receiving data through DMA
transfers) that are instantiated once per SPE. As an example
of this process, let’s take the following skeleton expression
that builds a simple three stages pipeline:

run( seq(A) | seq(B) | seq(C) );

This expression leads to the following skeleton AST:

Listing 4. Skeleton Compile-time structure
expr< pipe

, args<expr< seq, args<function<&A> > >
,expr< pipe

, args<expr<seq, args<function<&B> > > >
, args<expr<seq, args<function<&C> > > >
>

>
>

The structure of this temporary object is rather clear.
Successive calls of the pipeline operator is clearly visible
and the terminal function object appears explicitly. For per-
formance purpose, we use the fact that the address of a func-
tion is a valid compile-time constant to store it directly as a

template parameter. We know convert this type into a proper
process network representation. The end results is the fol-
lowing type:

Listing 5. Process network representation
network< int_<0>, int_<2>

, list< process< int_<0>
, desc< pid<-1>, pid<1>

, instrs<Call<&A>,Send>
>

>
, process< int_<1>

, desc< pid<0>, pid<2>
, instrs<Recv,Call<&B>,Send>
>

>
, process< int_<2>

, desc< pid<1>, pid<-1>
, instrs<Recv,Call<&C> >
>

>
>

>

The network template type contains all the infor-
mations that describe the Communicating Serial Process
Network built from our skeletons, namely : the PID of
the first network node, the PID of the last network node
and a list of processes. In a same fashion, the process
template structure holds information about its own PID and
a code descriptor. This descriptor contains the PID of the
process predecessor, the PID of the process successor and a
list of macro-instructions that are drawn from the skeleton
semantic.

Last step is now to iterate over those types and instantiate
the proper SPMD code. Listing 6 shows the final look of the
generated code.

Listing 6. Generated code
if(rank() == 0)
{
result_of<A>::type out;
do
{
call<A>(out); DMA_send(out,1);

} while( status() );
}

if(rank() == 1)
{
parameters<B>::type in;
result_of<B>::type out;
do
{
DMA_recv(in,0); call<B>(in,out); DMA_send(out,1);

} while( status() );
}

if(rank() == 2)
{
parameters<C>::type in;
do
{
DMA_recv(in,1); call<C>(in);

} while( status() );
}
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The SPMD structure of chained if statements shows the
iterative nature of our code generator. Each of these blocks
perform the same operations. First the input and output
types are retrieved from the meta-programmed analysis of
the function type. Those types are then instantiated as an
unique tuple. The actual process code is then run into a
loop that awaits for a termination signal. In this loop, each
of the macro-instructions appearing in the process network
type description generated a concrete call to either a DMA
transfer function or to the function call proxy function that
extracts data from tuples, feeds them to the user-defined
function itself and returns a tuple of results. Most parts of
this process are leveraged by Boost libraries like Proto that
handles the generation of the meta-programmed semantic
rules and Fusion which handles the transition between
compile-time and runtime behaviour[7].

This generation process also shed a light on why SKELL
BE performances are better than other C++ solutions like
MUESLI. In the generated code, all the functions and skele-
ton dependant code have been statically resolved. All data
types are concrete and all functions call are direct. No run-
time polymorphism actually takes places and the compiler
is able to inline more code and to perform deeper optimiza-
tion than on polymorphic C++ code.

3.2. PPE/SPEs Communications

The last challenge is to provide a pervasive way to trans-
fer the kernel arguments between the PPE that is usually in
charge of I/O operations with the user and the SPEs. A clas-
sic strategy consists in building a control block which gath-
ers common informations to be transferred to SPEs at the
beginning of the program. Usually, this control block is an
application-dependant structure that contains all the data hat
the SPE kernel needs. In our case, those data are provided
as arguments of the main kernel function call. Then we
have to build at compile-time a proper control block struc-
ture. This is done by using template meta-programing to
parse the function prototype to extract a list of its argument
types. The control block is then defined as an array contain-
ning each SPE memory space base address and a tuple built
using the following algorithm :

• Native types inputs are stored by value;

• Native types outputs are stored as a pair made of their
address and a static value containing their size;

• Arrays are stored as a pair made of the address of the
array elements and a static value containing the array
size;

• User-defined types are stored as a pair made of the ad-
dress of the object’s data and size. Those values are

retrieved by an eventual begin and size method. If
such methods are not available, we try to call an over-
loaded begin and size free function. If this fails,
we take the address and sizeof of the object. This
protocol ensures that user can provide ways to effi-
ciently transfer the user-defined types by providing one
of these functions or methods. Types introspection is
used to check for the existence of those methods and
functions.

This structure is then filled with the actual data passed as ar-
gument to the kernel call before launching the SPE threads.
As an example, the following function prototype :

void f( int, int[5], float& );

is turned into this structure :

Listing 7. Transfer structure
struct f_args
{
int arg0;
pair<int, int_<5> > arg1;
pair<float, int_<4> > arg2;

};

and the following function is generated to fill it :

Listing 8. Transfer structure filler
void f_args_fill( f_args& a, int v0, int v1[5], float&

v2 )
{
a.arg0 = v0;
a.arg1.first = &v1[0];
a.arg2.first = &v2;

};

On the SPE side, the argN objects provide an implicit
template cast operator that retrieves the values of the N th

tuple element through DMA and an affectation operator that
transfers a value to the corresponding data in the PPE ad-
dress space. The automatic template arguments deduction
allows a compact and intuitive syntax such a way that the
compiler can call the correct DMA transfer primitives based
on the argument index and value type.

4. Experimental Results

We want to show that SKELL BE does not induce per-
formance loss. To do so, we ran several sets of tests. The
first test relies on synthetic applications combining skele-
tons to evaluate the overhead of meta-programs. The other
tests evaluate the performance of numerical algorithms and
of an image processing algorithm – the Harris and Stephen
corner detector[12] – using different mappings. All tests
ran over an IBM QS20 blade in optimal bandwidth usage
conditions[20], were compiled using the gcc tool-set and
evaluates the number of cycles per elements of each kernel.

6



4.1. Synthetic benchmarks

The first benchmark aims to assess the fact that the over-
head induced by the meta-programming layer is negligible
for a single skeleton. To do so, we compare the execution
time of a synthetic kernel using each skeleton with an
increasing number of SPEs built using SKELL BE or
with hand-written code. First tests assess that running a
function through the SEQ and the CHAIN operator doesn’t
incur a large overhead. The measurements show that the
overhead introduced by those skeletons is indiscernible
when considering the accuracy on execution time measure-
ments. Examining the assembler code source shows that
the only difference between a direct call or chaining and
the skeleton version is a pointer indirection to resolve the
actual function address from the function adapter object
internally used.

The tests for the PIPE skeleton build a pipeline of 2 to
8 SPEs in which data transfer is negligible. Each stage of
these pipeline executes a function which duration T ranges
between 10ms and 200ms. Same tests are done for the
PARDO skeleton. Figure 2 and 3 summarize the results of
these measurements. In most cases, the overhead is always
less than 1.5 percent.

Figure 2. Overhead introduced by the pipe
skeleton

4.2. Scalability benchmarks

The next benchmarks implement three computation
kernels by hand using the Cell SDK, with the experimental
XLC single source compiler with OpenMP support for the
CELL and SKELL BE . It measurements relative speed-up
between 2 to 8 SPEs and assess the scalability of our tool.

DOT kernel
We perform a dot product between two arrays of 109 sin-
gle precision floating-point elements. The OpenMP version
uses a reduction directive while hand-written and SKELL

Figure 3. Overhead introduced by the pardo
skeleton

BE version explicitly gather sub-dot product onto the PPE
and performs the final sum out of the SPEs. In this case,
OpenMP minimum cycles per element is 66.08, hence pro-
viding a relative speed-up of 3.32 while the manual imple-
mentation provides a relative speed-up of 7.98, OpenMP
performances being limited by the workload handling that
generates a large number of communications. In this config-
uration, SKELL BE provides a maximum relative speed-up
of 7.85, hence an overhead which is never greater than 5%.

SPE OMP Manual Skell Overhead

1 219.7 65.9 67.9 3.1%
2 263.7 32.9 34.5 4.7%
4 131.9 16.5 17.3 4.78%
8 66.1 8.3 8.7 4.9%

Figure 4. DOT Benchmark

CONVO kernel
We perform a convolution between a 4096 × 4096 pixels
images and 3 × 3 convolution mask. In all version, the
mask is duplicated on all SPEs.

SPE OMP Manual Skell Overhead

1 2402 649 672 3.6%
2 4289 391 411 5.0%
4 2146 172 181 5.2%
8 1073 98 103 5.4%

Figure 5. CONVO benchmark

Manual implementation yields a maximum speed-up of
6.58 compared to the OpenMP speed-up of 2.24 and the
SKELL BE speedup of 6.52. The overhead introduced by
SKELL BE is still around 3 to 5% but has increased. While
DOT only transfered back one value per SPE, CONVO sends
back large slices of data back to the PPE. In this case, the
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marshaling code need to take care of proper alignment of
address and size before proceeding to the transfer. Those
checks that can only be done at runtime explains the
additional overhead.

SGEMV kernel
Last benchmark involves a matrix-vector product between
a 4096 × 4096 elements matrix and a 4096 × 1 vector.
Considering the size of the matrices, all data are stored on
the PPE and transfered to each SPE.

SPE OMP Manual Skell Overhead

1 200.7 179.8 187.9 4.6%
2 208.5 79.9 83.9 4.9%
4 104.3 42.2 44.5 5.5%
8 52.2 23.6 25.0 5.9%

Figure 6. SGEMV Benchmark

Again, SKELL BE scalability is on par with the hand-
written code. Overhead almost reach 6% with 8 SPEs and
exhibit the same increase than between DOT and CONVO,
thus validating the link between the overhead and the
communication marshaling.

Benchmark analysis
Those tests show that for those basic kernels, SKELL
BE overhead never exceeds 6%. In all cases, this overhead
is induced by the marshaling code around communications
that handles kernel execution. The advantage is that, con-
trary to the current experimental version of OpenMP, scal-
ability is preserved. The poor results of OpenMP may be
linked to the fact that OpenMP use a generic software cache
for handling communications[5] while our hand-written
code use specific data transfers schemes.

4.3. Harris and Stephen corner detector

Next step is to show how SKELL BE behaves for com-
plete algorithms with different mapping strategies. We
chose the Harris and Stephen corner detector[12], which is
a basic block with a large number of image processing ker-
nels. This detector computes what Harris and Stephen call
a coarsity matrix that gives for each pixel its ’cornerness’
value.

Basically, a corner is defined as a pixel which gradient is
strong in both directions. The sequential implementation of
this algorithm is given on figure 7. The parallel version of
the Harris operator can be built in various ways: the com-
putation kernels can be fully or partially chained and the re-
sulting new kernels can then be replicated and/or pipelined
over the 8 SPEs. We consider three versions of the same al-
gorithm: the full-chain version in which the four kernels are

I

Grad X

Grad Y

Ix

Iy

Mul

Ixx=Ix*Ix

Ixy=Ix*Iy

Iyy=Iy*IyMul

Mul Gauss

Gauss

Gauss

Sxx

Sxy

Syy

coarsity
Sxx*Syy-Sxy²

K

Figure 7. Harris and Stephen operator algo-
rithm

chained and replicated on each SPEs; the half-chain version
in which the Gradient and the Multiplication kernels are
chained, then pipelined with the chaining of the Gauss and
Coarsity kernels and replicated four times; the no-chain ver-
sion in which all kernels are pipelined and replicated twice.
All these kernels uses a dedicated type for handling images
tiles and take care of border transfers. Listing 9 presents
the three versions of the detector using the seq function,
pardo functions and the infix version of chain (repre-
sented by the comma operator) and pipe (represented by
the bitwise or operator).

Listing 9. Three SPE kernels for the Harris
and Stephen operator

void full_chain_harris(tile const&,tile&)
{
run( pardo<8>((seq(grad),seq(mul)

,seq(gauss),seq(coarsity)));
}

void half_chain_harris(tile const&,tile&)
{
run( pardo<4>( (seq(grad),seq(mul))

| (seq(gauss),seq(coarsity)));
}

void no_chain_harris(tile const&,tile&)
{
run( pardo<2>( seq(grad) | seq(mul)

| seq(gauss) | seq(coarsity));
}

Table 8 present the results obtained with those kernels.

Version Full-chain Half-chain No-chain
Manual 11.26 8.36 9.97

SKELL BE 11.86 8.64 10.43
Overhead 5.33% 3.35% 4.61%

Figure 8. Harris and Stephen overhead

We compare the number of cycles per points spent
by a hand-coded version of those kernels (using explicit
DMA transfers) and the three previously defined kernels
for 512x512 images. The worst case overhead introduced
by SKELL BE is slightly more than 5%, which validate
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our approach. The overhead is larger than previously as
the adapter function calls and various marshaling code for
DMA transfers handling overhead accumulate.

4.4. Impact on executable size

Template meta-programing is often blamed to produce
code bloat and to generate excessively large executable file
due to code replication. With the CELL processor and its
256KB local store, such code bloat should be prevented or
at least kept under control. To evaluate the impact of this
technique on our code, we compare the size of compiled
kernels on one SPE using an hand-written approach and
SKELL BE .

Kernel DOT CONVO SGEMV HARRIS
C code 1.1KB 1.3KB 2.3KB 5.3KB

SKELL BE code 12.6KB 14.5KB 22.7KB 49.4KB

Figure 9. Impact on executable size

Globally, the whole executable largely fits in the 256 KB
boundary of a SPE local store but he SKELL BE kernel com-
piled code is ten times larger than the hand-written version.
This overhead is mainly induced by the fact that SKELL
BE generate a SPMD program in which all the code for all
the SPEs are compiled, thus making code eight times larger.
When larger code need to be compiled, source files can be
compiled 8 times while passing the actual SPE PID as a
preprocessor symbol and have the meta-programing layer
generating code only for this PID.

4.5. Impact on compilation time

Another common problem with complex template me-
ta-programing is its impact on compilation time. Analysis
shows that the actual compilation time of any given SKELL
BE program can be decomposed in two parts : an upfront
1.5s overhead due to preprocessing directives handling user-
defined functions integration and an overhead proportional
to the number of skeleton types used as compiler caches
template type instance as it encounters them. Fine analysis
using internal gcc timing shows that this overhead is mainly
due to name look-up and is no less than 1s per skeleton type
instance. In the worst case, like for example the half-pipe
version of the Harris detector, compilation time can take as
much as 10s. Those 10s have to be compared to the other
tools presented in section 2.4 which are using no to a few
templates and compile arbitrary skeleton code in less than
3s.

5. Concluding remarks and perspectives

Designing tools for high-level programming is a
non-trivial tasks as such tools should be both expressive,
efficient and easy to use by non-specialists. Such tools can
be efficiently implemented as Embedded Domain Specific
Language into a wide-spread language like C++ . In the
case of the Cell processor, one of the most challenging
task is to properly define an application mapping onto
the processor. In this paper, we propose such an EDSL
for building application mappings using Algorithmic
Skeletons from a set of simple constructors and gave a
proper implementation based on C++ meta-programing .

Experimental results assess the ability of this library to
deliver high-performance and proper scalability. Bench-
marks of simple kernels show that the global overhead is
never greater than 6% and that the integration of third-party
library function is done without any lose of performances.
The benchmark of the complete image processing algo-
rithm shows that the expressiveness provided by the tool
allows to test many mapping strategies with minimal code
impact.

Future works are headed toward three directions :

• In terms of features, we work on supporting multi-
buffering, emulating code overlay inside SKELL
BE and providing higher-level skeletons like Divide
and Conquer,Pyramid or asynchronous Farm which
extends the expressiveness of SKELL BE by support-
ing more irregular processing patterns.

• On a larger scope, the unification of SKELL BE and a
similar tool for clusters (QUAFF [8]) interface is cur-
rently under way so we can deploy code on clusters of
Cell processors or other similar heterogeneous archi-
tectures.

• Other architectural target can be considered like FPGA
or GPUs. In this case, the method could be extended to
not only perform compile-time generation but also use
multi-stage programming to generate actual compi-
lable file, compiled at run-time and retrieve an entry
point to the compiled program and run it on the actual
accelerator.

Other tools based on the same techniques are planned to
take care of the automatic generation of algebraic code over
the SPEs and the PPEs using the AltiVec extension. Such a
tool, paired with SKELL BE , would lift a large part of the
difficulty of Cell software development and accelerate the
rate at which highly demanding applications are ported on
this architecture.
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