
Efficient 16-bit Floating-Point Interval Processor
for Embedded Systems and Applications

Stéphane Piskorski
Laboratoire de Recherche en Informatique

CNRS – Univ Paris-Sud
F-91405 Orsay Cedex, France

Lionel Lacassagne
Institut d’Electronique Fondamentale

CNRS – Univ Paris-Sud
F-91405 Orsay Cedex, France

Michel Kieffer
Laboratoire des Signaux et Systèmes
CNRS – Supélec – Univ Paris-Sud

F-91192 Gif-sur-Yvette, France

Daniel Etiemble
Laboratoire de Recherche en Informatique

CNRS – Univ Paris-Sud
F-91405 Orsay Cedex, France

Abstract

This paper presents the implementation of a 16-bit inter-
val floating-point unit on a soft-core processor to allow in-
terval computations for embedded systems. The distributed
localization of a source using a network of sensors is pre-
sented to compare the performance of the proposed proces-
sor to those obtained with a general-purpose processor.

1 Introduction

In the last ten years, interval techniques [19, 20] have al-
lowed original solutions for many problems in engineering
to be proposed, see, e.g., [10]. One of the main features of
interval techniques is their ability to provide guaranteed re-
sults, i.e., with a verified accuracy, or which are numerically
proved. Consider for example, a bounded-error parameter
estimation problem: the value of some parameter vector has
to be estimated from measured data, using a given model
structure and bounded measurement errors. In such a con-
text, one may obtain a set which can be proved to contain
all values of the parameter vector that are consistent with
the model structure, the measured data, and the hypotheses
on the noise. Nevertheless, the application of interval tech-
niques in embedded real-time applications is far less devel-
oped. The lack of efficient interval hardware support may
be a reason for this slower development.

Hardware implementations of interval arithmetic have
been mentioned twenty years ago in [16]. Extension of
existing hardware platforms have been proposed, e.g., in
[26] and [15]. Nevertheless, chip builders were not yet con-
vinced of the usefulness of performing specific adaptation

of chips to implement interval analysis. This is why interval
analysis is mainly performed by software implementations
on general-purpose processors. Interval computations are
however quite inefficiently performed on such processors,
since the recurrent rounding mode switchings required by
interval computations results in also recurrent flush of the
processor pipeline [8]. This specific problem led people to
study and design dedicated floating-point units (FPU) well
suited to double rounding modes (toward −∞ and toward
+∞) [15]. Moreover, in many applications, 32-bit FPU are
oversized. Measurements, corrupted by errors, do not re-
quire to be processed with such an accuracy and in many
cases, smaller FPU with reduced precision may fit the appli-
cation constraints and provide a satisfying accuracy. Thus,
for example, 16-bit floating-point computation is an effi-
cient way to tackle both accuracy and dynamic problems
encountered in signal and image processing [17], for filter-
ing and convolution-based algorithms.

This paper introduces 16-bit floating-point arithmetic
adapted to interval computations. The main idea is inspired
by [15], which proposed to implement two 32-bit FPU on
the 64-bit FPU of a general-purpose processor. Here, sim-
ilarly, noticing that a 16-bit FPU is smaller than a 32-bit
FPU, two 16-bit FPU (managing the two rounding modes
required for interval computations) are shown not being
much bigger than a single 32-bit FPU. The main advantage
is that no rounding mode switching is required, preventing
them from flushing the processor pipeline. The implemen-
tation of such a 16-bit FPU is performed on the FPGA based
NIOS-II soft processor [2, 6], which allows instructions to
be added to its instruction set. Customizable processors rep-
resent an opportunity to propose efficient and low-cost on-
chip interval applications which may be used in embedded

applications.
To compare the performance of 16 and 32-bit FPU, a

source localization example using a network of acoustic or
electromagnetic sensors is considered. In such network of
sensors, power consumption and computational complexity
are strong constraints when one is concerned with the in-
crease of operability and autonomy [5]. Distributed interval
constraint propagation [12] has been proposed as an effi-
cient and low-complexity solution for source localization
using a network of wireless sensors.

Section 2 recalls the distributed source localization prob-
lems and sketches the solutions based on interval analysis.
In Section 2, the architecture of the 16-bit FPU is presented.
Attention is paid to accuracy and dynamic range. Results
provided by a 32-bit FPU are compared to those obtained
with two 16-bit FPU on realistic simulated data. Section 3
describes the hardware implementation on the two targeted
architecture (Pentium4 and NIOS-II) and provides bench-
marks for execution time and energy consumption.

2 Source localization with a network of sen-
sors

Localizing a source emitting an acoustic or electromag-
netic wave using a set of distributed sensors has received a
growing attention in recent years, see, e.g., [25, 24]. The
localization technique used depends on the type of informa-
tion available to the sensor nodes. Time of arrival (TOA),
time difference of arrival (TDOA), and angle of arrival
(AOA) usually provide the best results [22]. Nevertheless,
these quantities are rather difficult to obtain, as they require
a good synchronization between timers (for TOA), collabo-
ration between neighboring sensors (for TDOA), or multi-
ple antennas (for AOA). Contrary to TOA, TDOA, or AOA
data, readings of signal strength (RSS) at a given sensor are
easily obtained, as they only require low-cost measurement
devices or are already available, as in IEEE 802.11 wireless
networks, where these data are provided by the MAC layer
[24].

This paper focuses on source localization from RSS
data using a distributed localization technique. Distributed
means that each sensor processes its own measurements and
exchanges partially processed data with its neighbors. This
approach has the advantage of being more robust to sen-
sor failures than centralized localization, where all mea-
surements are processed by a single unit. Distributed ap-
proaches have been employed, e.g., in [23], where a dis-
tributed version of nonlinear least squares has been pre-
sented. When badly initialized, this approach suffers from
convergence problems, as illustrated in [7], which advocates
projection on convex sets. However, this requires an accu-
rate knowledge of the source signal strength and of the path
loss exponent. In [12], a centralized and distributed local-

ization technique based on interval analysis has been pro-
posed. All measurement noises are assumed to be bounded
with known bounds. The problem is then cast into a set-
inversion problem, which is solved in a centralized fashion
using SIVIA [11] and in a distributed manner using interval
constraint propagation [10].

The model, hypotheses, and main results of [12] are
briefly recalled here, before introducing the implementation
of the localization algorithm on a dedicated processor.

Source localization from bounded-error
data

The single source localization problem illustrated on
Figure 1 is considered. The unknown location of the source

Figure 1. Source (o, unknown location θ) and
sensors (x, known location r`)

is denoted by θ ∈ R2; r` ∈ R2, ` = 1 . . . L represents
the known location of the sensors. The RSS by sensor `
is denoted by y`. Using the Okumura-Hata model [21], de-
scribing the mean power received by the `-th sensor when
a source at a distance |r` − θ| emits a wave with power A
(measured at a distance of 1 m), one may write

y` = ym (θ, A, np, `) w`, ` = 1 . . . L (1)

with

ym (θ, A, np, `) =
A

|r` − θ|np . (2)

The noise w` ∈ [w] is multiplicative, as it is additive in the
log domain. In (2) , np is the path-loss exponent. Both A
and np are assumed unknown. The parameter vector to be
estimated is thus p = (θT, A, np)T and ym (θ, A, np, `) will
be written as ym (p, `).

The aim here is to characterize the set P ⊂ [p]0 of all pa-
rameter vectors that are consistent with the measurements,
the RSS model (2), and the noise bounds. The initial search

box [p]0 is assumed to contain the actual parameter value
p∗. P may then be defined as follows

P = {p ∈ [p]0 | ym (p, `) ∈ [y`] , ` = 1 . . . L} , (3)

where [y`] = y`/ [w] is assumed to contain the actual noise-
free RSS by sensor `.

The characterization of P when all measurements y` are
available at a given location of the sensors network is a clas-
sical set-inversion problem which may be solved using set-
inversion techniques, like SIVIA [11]. SIVIA provides two
subpavings (union of non-overlapping boxes) P and P, such
that

P ⊂ P ⊂ P.

The accuracy of the description of P is controlled by a pa-
rameter ε, which determines the width of the smallest box
in P and P.

This approach may be easily extended in a distributed
context: each sensor ` may evaluate two subpavings P` and
P`, guaranteed to enclose the set

P` = {p ∈ [p]0 | ym (p, `) ∈ [y`]} ,

of all values of p consistent with the `-th measurement. The
solution set P in (3) is then obtained by intersecting the sets
P`, ` = 1 . . . L

P =
L⋂

`=1

P`.

Performing this intersection is far from being trivial. This
requires the transmission of the solution sets P` between
sensors. Such exchanges require many communications, a
highly energy consuming task, especially when the desired
accuracy (determined by ε) is high, resulting in a large num-
ber of boxes stored in each subpaving. The next section de-
scribes an alternative approach based on interval constraint
propagation (ICP) [10].

Distributed localization: interval con-
straint propagation

Here, contrary to classical constraint satisfaction prob-
lems, the variables and constraints are distributed over the
sensor network, [3, 1]. However, ICP may still be used at
each individual sensor.

At a sensor `, the variables are y`, θ, A, and np, their
domains are [y`], measured at the sensor, and [θ], [A] and
[np], obtained from its neighbors. The variables must satisfy
the constraint provided by the RSS model (2), thus

y` −
A

|r` − θ|np = 0. (4)

From (4), the contracted domains [10] may be written as

[y′`] = [y`] ∩
[A]

|r` − [θ]|[np]
,

[A′] = [A] ∩ [y′`] |r` − [θ]|[np] ,[
n′p

]
= [np] ∩ (log ([A′])− log ([y′`])) / log (|r` − [θ]|) ,

[θ′1] = [θ1] ∩
(

r`,1 ±
√

([A′] / [y′`])
2/[n′

p] − (r`,2 − [θ2])
2

)
,

[θ′2] = [θ2] ∩
(

r`,2 ±
√

([A′] / [y′`])
2/[n′

p] − (r`,1 − [θ1])
2

)
.

In the last two update equations, the set intersecting [θ1] and
[θ2] may consist of two disconnected intervals. In this case,
the smallest interval containing the result is evaluated. For
each sensor, ICP provides thus a box which is guaranteed to
contain the set P defined by (3).

Using [9], it can be shown that the contraction is optimal
with respect to the information available at the `-th sensor.
However, when considering all constraints simultaneously,
the optimality conditions no longer hold. Cycling through
the sensor network, as in [23, 7] improves the estimation.
More details about the optimization of sensor communica-
tions may be found in [3].

In this distributed approach, a single box has to be trans-
mitted from one sensor to its neighbors, which is much
less energy consuming than transmitting a subpaving. To
perform all computations at a given sensor, basic interval
arithmetic operations have to be implemented (+,−,×, and
/), the intersection between intervals, and the square root
and square of an interval. Elementary functions ln (·) and
exp (·) have also to be provided. The next section shows
how interval constraint propagation may be implemented
on a dedicated FPGA using 16-bit floating-point numbers.

Why 16-bit floating-point numbers?

On one hand, for some applications in image and signal
processing (e.g., filtering), 32-bit floating-point (FP) num-
bers are oversized. On the other hand, fixed-point arithmetic
may be inaccurate (e.g., when considering recursive filter-
ing, motion estimation, image stabilization). Moreover, for
embedded applications, a 32-bit FPU is larger than a 16-bit
FPU and thus consumes more power. As interval compu-
tation requires rounding mode switching, designing a cus-
tomized 16-bit interval FPU is a way to tackle both prob-
lems together, as will be seen with the Altera NIOS-II soft
processor [2].

F16 format

Some years ago, a 16-bit FP format called half has been
introduced in the OpenEXR format [4] and in the Cg lan-
guage [18] defined by NVIDIA. It is currently being used

in some NVIDIA and ATI graphical processing units (GPU)
for transformation and lightning (3D computations).

The half format is justified by ILM, which developed the
OpenEXP format, as a response to the demand for higher
color fidelity in the visual effect industry:

“16-bit integer based formats typically repre-
sent color component values from 0 (black) to 1
(white), but do not account for over-range value
(e.g. a chrome highlight) that can be captured by
film negative or other HDR displays. Conversely,
32-bit floating-point TIFF is often overkill for vi-
sual effects work. 32-bit FP TIFF provides more
than sufficient precision and dynamic range for
VFX images, but it comes at the cost of storage,
both on disk and memory.”

Similar arguments are used to justify the half format in
Cg language. Half format is used to reduce storage cost,
while computations are done with 32-bit FP formats, either
by the CPU or the GPU.

In the remainder of this paper, this 16-bit FP format will
be called F16 and the IEEE-754 32-bit single-precision FP
format will be called F32. Both formats are represented in
Figure 2. F16 has a 1-bit sign, a 5-bit exponent with a bias
of 15 and a 7-bit mantissa. A number is interpreted exactly
as in the other IEEE FP formats. The range of the format
extends from 6× 10−5 to 216 − 25 = 65504.

s exponent fractionF16

F32

5 10

s exponent fraction

8 23

1

1

Figure 2. F32 and F16 floating-point numbers

From an architectural point of view, as many algorithms
belong to the class of memory bounded problems, reducing
the size of floating-point numbers could have a great impact
on performance (just because twice less bytes have to be
transfered); for algorithms with a small computational ratio
(that is the number of mathematic computations per point
divided by the number of memory accesses per point), their
speed is limited by the memory bandwidth of the processor.

From an algorithmic point of view, the format can be
tuned to an application, by allocating more bits to the man-
tissa to increase the accuracy, or to the exponent to increase
the dynamic range. The bias can be also customized to fa-
vor numbers smaller or bigger than the unit. In embedded
systems, in order to balance the hardware cost and the al-
gorithms accuracy, lighter FP coding with 15, 14 or even
only 13 bits may be considered. Moreover, as F16 instruc-
tions require less logic than F32, their implementation may

lead to faster clock frequencies on an FPGA than F32. Fi-
nally with such an approach, custom floating-point formats
may be finely tuned to the application and to the embedded
constraints.

Moreover, as interval algorithms require from twice
up to four times more arithmetic computations that non-
interval algorithms, where the speed of arithmetic operators
depends on the width of their operands, reducing the num-
ber of bits, from 32 down to 16 could be a good trade-off
between execution time and accuracy.

2.1 F16 intervals

When running interval algorithms on a RISC processor,
even by using a library like PROFIL/BIAS [13, 14] to target
real-time implementations (or at least quick implementa-
tion), the main problem lies in swapping the rounding mode
used for floating-point computations. IEEE 754 defines 4
modes, and interval computations use two of them, towards
+∞ and −∞. On most processors, this change forces the
processor to flush its pipeline. The deeper the latter is, the
bigger the resulting cycle penalty is.

FPGA and soft core processors can be an issue by de-
signing two FPU; the first one is dedicated to computations
with rounding towards −∞ the second one towards +∞.
With two FPU, changing the rounding mode is no more re-
quired. Another important point is that, on a 32-bit architec-
ture, 16-bit numbers and 16-bit operators can be viewed as
a natural way of doing parallel computations: two F16 num-
bers are stored inside 32-bit words and define an F16 inter-
val number. Such numbers are sent to an interval Floating-
Point Unit (iFPU) where computations are done in parallel
on the two bounds.

The soft core used for this implementation is the NIOS-
II from Altera. In this customizable 32-bit RISC processor,
new instructions, new data formats, and functions can be
easily added in the C language.

Two Altera kits have been used: Cyclone and Stratix
II. The Cyclone device has up to 20k Logic Elements and
288 kb SRAM. The Stratix II device has up to 60k logic el-
ements, 2 Mb SRAM, and 36 DSP blocks which can imple-
ment 144 18 b×18 b multipliers. In our benchmarks, these
DSP blocks introduce a significant difference in the multi-
plier performance. Both devices can use the NIOS-II soft-
core CPU. The processor main features are summarized in
Table 1. New instructions can be customized and added to
the CPU ISA [2], as shown in Figure 3, in the custom logic
block. The hardware operators for the customized instruc-
tions are described with VHDL or Verilog. Two types of
operators can be defined. The combinational operators are
used when the propagation delay is shorter than the pro-
cessor cycle time. In that case, the defined interfaces are
the 32-bit input data (dataa and datab) and the output data

(result). When the propagation delay is greater than the
clock cycle time, multi-cycle operations must be used. They
have the same data interface than the combinational opera-
tors, plus clock and control signals: clk (processor clock),
clk enable, a global reset (reset), a start signal (ac-
tive when the input data are valid) and a done signal (ac-
tive when the result is available for the processor). Since the
processor uses a 32-bit data interface, it is natural to define
all our instructions as interval instructions: each one oper-
ates simultaneously on two 16-bit FP operands. This is a big
advantage of using F16 operands as it doubles the through-
put of operations. Using the customized instructions in a
C program is straightforward. Two types of “define” are
used as the instructions can have one or two input operands:

• #define INST1(A) builtin custom ini

(Opcode INSTR1, (A))

• #define INST2 (A, B) builtin custom inii

(Opcode INSTR2, (A), (B))

For both kits, the minimal clock frequency is 50 MHz.
The maximal clock frequency depends on the complexity
of the customized arithmetic instructions, and is higher for
the Stratix II kit. Quartus II software has been used to gener-
ate the FPGA configuration files form the NIOS-II file and
the VHDL code for the customized instructions. All the
benchmarks have been compiled with the Altera Integrated
Development Environment (IDE), which uses the GCC tool
chain. The optimizing option -O2 has been used in re-
lease mode. Execution times have been measured with the
high res timer that provides the number of processor
clock cycles for the execution time. We only provide results
for the Stratix II kit which is faster than the Cyclone one.

Figure 3. NIOS II architecture

Table 1 presents the fixed and tunable features of
the NIOS-II processor. The clock frequency depends

on the operator complexity and is usually in the range
[100 MHz. . . 200 MHz]. Note that cache size are customiz-
able from 2 and 4 kB up to 64 kB. Cache sizes have been
set to the minimum to save space on the FPGA.

fixed features

32-bit RISC processor
branch prediction

dynamic branch predictor
barrel shifter

parameterized features

HW integer multiplication and division
4 KB instruction cache

2 KB data cache
customized instruction

Table 1. NIOS-II main features

3 Application

A network of L = 5000 sensors randomly distributed
over a field of 100 m×100 m is considered, as well as a
single source, such that θ∗ = (50 m, 50 m), A = 100.
The measurement noise is such that e = 4 dBm. Table 2
provides typical measurements with their associated inter-
val. Only the sensors receiving significant amount of power
(y` > 5) participate to the localization.

number of sensors measurements

68 [9.303, 58.698]

741 [17.856, 112.664]

954 [18.644, 117.640]

Table 2. Example of measurements

3.1 Qualitative results: F32 vs F16 accuracy

In order to evaluate the impact of using F16 in place of
F32, the estimation algorithm has first been simulated with
a Pentium M running the distributed constraint propagation
algorithms using the PROFIL/BIAS library with F32 arith-
metic operators and functions (log, exp, power, and sqrt)
and a F16 version of the same library (the size of the man-
tissa is reduced to 10 bits). When the algorithm converges
(which requires between 2 and 3 cycles through the sensor
network), a solution box is provided, which is guaranteed to
contain the actual position of the source, provided that the
hypotheses on the measurement noise were not violated.

Figure 4 represents two histograms (for F32 and F16) of
the absolute value of the localization error. Figure 5 pro-
vides an histogram of the maximum width of projection of

the solution box on the θ-plane. For the simulation, 2000
runs with 5000 randomly distributed sensors were consid-
ered. The location of each sensor is represented using 16-
bit floating-point values, in order to have exactly the same
input data. The difference between the F32 and F16 results
thus only comes from the smaller accuracy of F16 numbers
(10 bits for F16 mantissa instead of 23 bits for the F32 one).

0 0.5 1 1.5
0

50

100

150

200

250

300

Average: 0.4172 m

Distributed ! F32

0 0.5 1 1.5
0

50

100

150

200

250

300

Average: 0.4180 m

Distributed ! F16

Figure 4. Localisation error: F32 vs F16

0 1 2 3 4 5
0

50

100

150

200

250

300

Average: 1.4940 m

Distributed ! F32

0 1 2 3 4 5
0

50

100

150

200

250

300

Average: 1.5117 m

Distributed ! F16

Figure 5. Diameter of the solution box: F32 vs
F16

The results obtained with F16 are very similar to those
obtained with F32. The average error and average width
differ by less than 1%. For this kind of application, F16

provides a satisfying accuracy and dynamic range. The next
section gives quantitative results on power consumption and
on the required number of logical units on the FPGA.

Quantitative results: F16 interval vs F32

standard instructions

Table 3 provides a comparison between F32 and F16 for
the number of blocks required for each instruction. The
hardware description language (HDL) descriptions of the
DIV, POW, SQRT, and LOG operators have been taken from
[4]. For these operators the rounding mode to nearest has
been replaced by the two rounding modes towards -∞ and
towards +∞.

Note that the 32-bit FPU only implements ADD, MUL, and
DIV. Complex instructions like POW, SQRT, and LOG should

Block F16 F32

Frequency 50 MHz 50 MHz

CPU 2018 1831

32-bit FPU - 5137
ADD 1441 -
MED 770 -
MUL 811 -
DIV 958 -

POW 439 782
SQRT 431 754
EXP 832 1289
LOG 898 1898

total 8590 11691

Table 3. Instructions size in block

be added in both cases. The implementation of POW is based
on iterative calls to MUL. For these two instructions, the
number of blocks is small, as DSP blocks incorporated on
Stratix II FPGAs are used. POW and MUL respectively use
two and four 18 × 18 DSP blocks. As can be seen in Ta-
ble 3, an interval F16 processor is smaller than a scalar F32

processor.
Tables 4 and 5 present a benchmark between a Pentium4

running the F32 PROFIL/BIAS library and a NIOS-II with
F16 iFPU. For NIOS-II, a cycle accurate chronometer is di-
rectly available. For the Pentium, two timers are available.
The first one is based on the Query Performance Counter
API which accuracy is better than 1 ms. The second one
is a high performance counter (a 64-bit hardware register)
that holds the total number of clock cycles elapsed from the
boot.

As clock frequencies are very different, we prefer to use
a normalized metric like the cpi, which is the number of
processor cycles per iteration (total number of clock cycles
divided by the number of iterations). It is a good metric
to estimate the adequation between the algorithm and the
architecture.

For embedded systems, the notion of performance does
not only implies speed, but also power/energy consump-
tion. Pentium 4 processors are fast but also very power
consuming. If we look at the energy (an important metric
for embedded systems) we can see that a NIOS2 proces-
sor on a StratixII device is twice more efficient. Note also,
that because no more rounding mode switch is required, the
NIOS2 cpi is smaller than the one of a Pentium 4, despite
the large number of hardware optimizations present in the
latter.

Two localization algorithms have been implemented.
The first one (Algorithm 1), presented in this paper (see
Section 2), estimates the path loss exponent. The second
one (Algorithm 2), assumes that the path loss exponent is

known, which requires much less computations. Compar-
ing these algorithms gives an idea of the price to pay (in
terms of cycles per iteration) to estimate this additional in-
formation. Besides, the first of these two methods leads to
data-dependent computation time. In our simulations, a sat-
isfying convergence level was reached after three iterations
of the algorithm in the whole sensor field. Before conver-
gence, one iteration takes about 45000 cycles (to compared
to the 5000 cycles needed by the second algorithm) and
about 9000 cycles after convergence, when fewer additional
information can be extracted from the measurements.

Pentium 4 NIOS-II

frequency 2.4 GHz 50 MHz
time (ms) 11.4 186
cpi 54800 9000 to 45000
power (W) 70 W 1 W

energy (mJ) 798 mJ 186 mJ

Table 4. Algorithm 1, unknown path loss ex-
ponent: P4 vs NIOS-II

Pentium 4 NIOS-II

frequency 2.4 GHz 50 MHz
time (ms) 0.833 26
cpi 4000 2600
power (W) 70 W 1 W

energy (mJ) 58 mJ 26 mJ

Table 5. Algorithm 2, known path-loss expo-
nent: P4 versus NIOS-II

Tables 4 and 5 provide results for Pentium 4 and NIOS-II
running the two algorithms for 5 iterations and 100 sensors
participating to the localization (500 iterations). Estimating
the path loss exponent requires seven times more comput-
ing power than not estimating this quantity. Comparing the
NIOS-II to the Pentium 4, it can be seen that even for Algo-
rithm 2, involving mathematical functions (finely tuned by
Intel inside its processor), NIOS-II is 4.3 times more effi-
cient than Pentium 4.

Conclusion

This paper has presented the evaluation of 16-bit
floating-point operators and customizable floating-point
formats for embedded systems performing source localiza-
tion with interval computions.

While the implementation of such type of algorithms
has some drawbacks on general-purpose processors (only

one FPU with pipeline flushes because of rounding mode
switching), the presented customized NIOS-II processor
with two 16-bit FPU, one for each rounding mode, tack-
les these drawbacks. As formats are customizable, interval
FPU can be tuned to the application (accuracy and dynamic
range) with an efficient energetic implementation. Com-
pared to a classical 32-bit implementation on a RISC com-
puter, the proposed solution is 4.3 times more efficient.

Future works tend to develop high-level tools to perform
an automatic design space exploration of the configurations
to efficiently implement F16 format for interval computa-
tion into an FPGA. Right now, customization has been done
at the instruction level, by adding new operations adapted to
interval computations. Next step is to envision function cus-
tomization that is to design an hardware accelerator imple-
menting a full iteration of the localization algorithm. Some
tools already exist like the Altera C2H compiler that directly
compiles in hardware a C function. The current version of
C2H is only able to compile integer functions, not FP ones.
When such a kind of tool will be able to do so, processor
customization will be available to non VHDL specialists.

References

[1] Special issue on distributed constraint satisfaction. In
B. Faltings and M. Yokoo, editors, Artificial Intelli-
gence, volume 161, pages 1–250, 2005.

[2] Altera. NIOS Custom Instructions, Tutorial, 2002.
http://www.altera.com/literature/tt/tt nios ci.pdf.

[3] R. Bejar, C. Fernandez, M. Valls, C. Domshlak,
C. Gomes, B. Selman, and B. Krishnamachari. Sensor
networks and distributed CSP: Communication, com-
putation and complexity. Artificial Intelligence Jour-
nal, 161(1-2):117–148, 2005.

[4] J. Detrey and F. de Dinechin. FPLibrary: A VHDL Li-
brary of Parametrisable Floating-Point and LNS Op-
erators for FPGA. ENS Lyon, 2006. http://perso.ens-
lyon.fr/jeremie.detrey/FPLibrary/.

[5] A. Dogandzic, J. Riba, G. Seco, and A. Lee Swindle-
hurst, editors. Location is Everythink, volume 22,
2005.

[6] D. Etiemble, S.Bouaziz, and L. Lacassagne. Cus-
tomizing 16-bit floating point instructions on a NIOS
II processor for FPGA image and media processing.
In Proc. Estimedia, New York, 2005.

[7] A. O. Hero III and D. Blatt. Sensor network source
localization via projection onto convex sets (POCS).
In Proceedings of ICASSP, 2005.

[8] Intel. Desktop performance and optimization for in-
tel pentium 4 processor. Technical Report 249438-01,
2001.

[9] L. Jaulin, M. Kieffer, I. Braems, and E. Walter. Guar-
anteed nonlinear estimation using constraint propa-
gation on sets. International Journal of Control,
74(18):1772–1782, 2001.

[10] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied
Interval Analysis. Springer-Verlag, London, 2001.

[11] L. Jaulin and E. Walter. Set inversion via interval anal-
ysis for nonlinear bounded-error estimation. Automat-
ica, 29(4):1053–1064, 1993.

[12] M. Kieffer and E. Walter. Centralized and distributed
source localization by a network of sensors using guar-
anteed set estimation. In Proceedings of ICASSP,
2006. submitted.

[13] O. Knüppel. PROFIL - programmer’s runtime opti-
mized fast interval library. Technical Report 93.4,
Institut für Informatik III, Technische Universität
Hamburg-Harburg, Germany, 1993. Available at:
ftp://ftp.ti3.tu-harburg.de/pub/reports/report93.3.ps.Z.

[14] O. Knüppel. PROFIL/BIAS – A fast interval library.
Computing, 53:277–287, 1994.

[15] R. Kolla, A. Vodopivec, and J. Wolff Von Gudenberg.
The iax architecture: Interval arithmetic extension,
1999.

[16] U. Kulisch and W. L. Miranker. The arithmetic of dig-
ital computer: A new approach. Siam Review, 28(1),
1986.

[17] L. Lacassagne, D. Etiemble, and S. Ould Kablia. 16-
bit floating point instructions for embedded multime-
dia applications. In Proc. IEEE Computer Architecture
and Machine Perception, Palermo, 2005.

[18] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kil-
gard. Cg: A system for programming graphics hard-
ware in a c-like language. In Proceedings of SIG-
GRAPH 2003, 2003.

[19] R. E. Moore. Interval Analysis. Prentice-Hall, Engle-
wood Cliffs, NJ, 1966.

[20] A. Neumaier. Interval Methods for Systems of Equa-
tions. Cambridge University Press, Cambridge, UK,
1990.

[21] Y. Okumura, E. Ohmori, T. Kawano, and K. Fukuda.
Field strength ans its variability in VHF and UHF
land-mobile radio service. Rev. Elec. Commun. Lab.,
16:9–10, 1968.

[22] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III,
R. L. Moses, and N. S. Correal. Locating the
nodes. IEEE Signal Processing Magazine, 22(4):54–
69, 2005.

[23] M. G. Rabbat and R. D. Nowak. Decentralized source
localization and tracking. In Proc. ICASSP, 2004.

[24] A. H. Sayed, A. Tarighat, and N. Khajehnouri.
Network-based wireless location. IEEE Signal Pro-
cessing Magazine, 22(4):24–40, 2005.

[25] G. Sun, J. Chen, W. Guo, and K. J. Ray Liu. Sig-
nal processing techniques in network-aided position-
ing. IEEE Signal Processing Magazine, 22(4):12–23,
2005.

[26] J. Wolff von Gudenberg. Hardware support for in-
terval computation. In G. Alefeld, A. Frommer, and
B. Lang, editors, Scientific Computing and Validated
Numerics, pages 32–37. Akademie-Verlag, Berlin,
Germany, 1996.

