
 1

Performance evaluation of the Altera C2H compiler on image processing benchmarks

Daniel Etiemble *, Stéphane Piskorski * and Lionel Lacassagne**
*LRI, ** IEF, University of Paris Sud

91405 Orsay, France
{de@lri.fr, stephane.Piskorski@lri.fr, lionel.lacassagne@ief.u-psud.fr }

Abstract
This paper dela with the use of the C2H Altera compiler for the
automatic VHDL synthesis of image processing function. The
C2H compiler has been used to accelerate low-level and
medium level image processing benchmarks. After code
transformation, speedups between 6 and 10 have been obtained.
For loops with a recurrence, a speedup greater than 2 has been
obtained;

1. Introduction
FPGAs with soft-core processors offer the opportunity for
testing various trade-offs between hardware and software
implementations of the functions to implement. With the Altera
NIOS II the processor can be customized through the addition of
new instructions [1]. Custom specific functions can be
implemented as coprocessors. Some months ago, Altera has
provided a C to Hardware compiler that can be used to speed-up
some C functions within a C program [2]. In this paper, we
present a preliminary performance evaluation of the C2H
compiler on image processing benchmarks. These benchmarks
are representative of low-level and intermediate level image
processing and include a lot a computation and memory
accesses. We compare the compiler results with results
delivered by customized implementation of SIMD instructions
on the NIOS processor. We show the basic C transformations
that provide the best C2H results.

2. Methodology

2.1 The Altera C2H compiler
As previously mentioned, the Altera C2H compiler is described
for the user in [2]. It is integrated in the NIOS II integrated
development environment (IDE) and generates hardware
accelerator for performance-critical sections of code. As noticed
in [2], the hardware accelerators generated by the C2H compiler
have the following characteristics:
- Parallel scheduling: the C2H compiler recognized events that

can occur in parallel. Independent statements are performed
simultaneously in hardware.

- Direct memory access: accelerators access the same memory
that the NIOS II processor does during execution

- Loop pipelining: the C2H compiler pipelines the logic
implemented for loops, based on memory access latency and
the amount of code that operates in parallel.

- Memory access pipelining: the C2H compiler pipelines
memory accesses to reduce the effect of memory latency.

Basically, the code to accelerate must be expressed as an
individual C function. For image processing kernels, the
corresponding function is the loop nest that operates on every
image pixel.

2.2 The different benchmarks
We consider a set of benchmarks that are representative of low-
level and intermediate level of image processing. The scalar C
code for each used benchmark is available at [3].
The first benchmark is derived from the description of the
EEMBC Grayscale benchmark [3]. It is a high pass filter, which
apply a 3 x 3 kernel (figure 1) to each byte pixel (level of gray)
of an N x N image. No multiplications or divisions are needed,
as they can be replaced by combinations of shifts and add/sub
operations (255 = 28-1; 28 = 25-22). However, this filter is
interested as accesses to all neighbor pixels are needed and the
nine pixel values are needed to compute the filtered value.

28 28 28
1

28 255 28
256

28 28 28

− − − 
 − − 
 − − − 

Figure 1: “Grayscale” filter derived from the description of
EEMBC Grayscale benchmark.

The second sets of benchmarks are the Deriche filters. The
horizontal version has two inner loops with a recursion that
prevents parallel executions of successive iterations. The
horizontal-vertical version allows parallel execution of
successive iterations of the inner loops. The Deriche gradient
has no multiplications, but includes the abs function.
The third type of benchmarks corresponds to Achard and Harris
algorithms to detect points of interest within an image. Figure 2
shows these algorithms. They share most computations and
differ by the final step. They include a 3x3 Sobel gradient
followed by 3x3 Gauss filters. The common part is typical of
low level image processing. For integer computations, initial
images with levels of gray have unsigned char format to code
the pixels. Sobel gradient computations lead to short format to
avoid overflow and the following multiplications lead to int.
format. We will only provide the results for the Harris
algorithm.

Image
Ix

Iy

3 x 3 gradient
(Sobel) Ix*Ix

Ix*Iy

Iy*Iy

Sxx

Sxy

Syy

Final
image

(Sxx*Syy-Sxy2)
- 0.05 (Sxx+Syy)2

Unsigned char short

int int

3 x 3 Gauss filters

Iyy*Sxx+Ixx*Syy-
2*Ixy*Sxy

Harris

Achard

Image
Ix

Iy

3 x 3 gradient
(Sobel) Ix*Ix

Ix*Iy

Iy*Iy

Sxx

Sxy

Syy

Final
image

(Sxx*Syy-Sxy2)
- 0.05 (Sxx+Syy)2

Unsigned char short

int int

3 x 3 Gauss filters

Iyy*Sxx+Ixx*Syy-
2*Ixy*Sxy

Harris

Achard

Figure 2: Achard and Harris algorithms to detect points of
interest (PoI).

 2

Optical flow algorithms compute the difference between
successive moving images. In this category, the Horn and Shunk
algorithm is the last benchmark that we used. Opposed to other
benchmarks, it involves divisions, which makes it particularly
interesting for performance evaluation.

2.3 Measures
We used the Stratix II Altera kit. The Stratix II device has up to
60k logic elements, 2 Mb SRAM and 36 DSP blocks that can
implement 144 18bx18b multipliers. We used a 50-MHz NIOS
II processor (fast version) with hardware integer multiplication
for all benchmarks and hardware division for the Optical Flow
benchmark.
All the benchmarks have been compiled with the Altera
Integrated Development Environment (IDE), which uses the
GCC tool chain. –O2 option has been used in release mode.
Execution times have been measured with the high_res_timer
that provides the number of processor clock cycles for the
execution time. The results use the Cycle per Pixel metrics
(CPP), which is the total number of clock cycles divided by the
number of pixels. For each benchmark, the execution time has
been measured at least 5 times and we have taken the averaged
value. The measures have been done for N x N images, with
N=128, 132, 256, 260, 512 and 516. All the results can be
found in [3]. In this paper, we will only provide the results for
N=256 and N=260. When N is a power of two (256 for
instance), there are a lot of cache conflicts that results from the
direct mapping policy that is used for the NIOS II data cache.
This is why it is significant to provide the results when N is not
a power of two.

3. Experimental results.

3.1 “Grayscale” results.
It is worthy giving some details on the C code transformations
to increase the C2H efficiency. As the accelerator should access
the data memory through the Avalon Switch Fabric, it is quite
evident that reducing the number of memory accesses will
generally increase the C2H efficiency. For 3 x 3 kernels such as
shown in Figure 1, this can be done according to several
techniques. The first one consists in replacing byte accesses by
32-bit word accesses. The pixel values are “unsigned char”, but
4 successive pixels in a row can be accessed as a 432-bit word.
This is equivalent to unroll 4 times the inner loop. Unrolling 4
times the inner loop multiplies by 4 the number of hardware
operators that are needed to implement the inner loop. The
second technique consists in balancing the memory accesses
between the inner and the outer loop. The outer loop accesses to
X[i-1][0], X[i][0], X[i+1][0], X[i-1][1], X[i][1], X[i+1][1] while
the inner loop accesses to X[i-1][j+1], X[i][j+1] and
X[i+1][j+1]. At the end of the inner loop, the values for columns
j-1 and j are updated. Obviously, these accesses can be byte or
32-bit word accesses, which mean that the two techniques can
be combined. When combining the two techniques, the loop
latency (LL) and cycles per loop iteration (CPLI) of the two
loops are given in Table 1. The CPP performance are given in
Table 2, in which the measures for the initial C version and the
software and C2H versions combining the two techniques (3
word accesses per inner loop). The speedup is computed

between the software and C2H optimized versions to only
consider the actual acceleration provided par the C2H
compilation when N = 2k. Otherwise, the speed-up versus the
initial version would be artificially increased due to the data
cache direct mapping. The speed-up is dramatic for this
benchmark for which all computations are parallel.

Loop LL CPLI
Outer loop 12 10
Inner loop 13 7

Table 1: Performance of the “grayscale” accelerated loops

N Initial JU4 JU4(C2H) Speed-up

256 54.43 35.52 2.52 14.10

260 31.01 31.15 2.52 12.36

Table 2: CPP performance for “grayscale”

3.2 Deriche benchmarks.
The Deriche gradient has also parallel computations. The abs
function has been in-lined in the code. The results, presented in
Table 3, are similar to “Grayscale results”.
The Horizontal-Vertical version of Deriche filter involves
multiplications and additions, but has no obstacle to parallel
executions. The results are presented in Table 4.
The Horizontal version of Deriche filter, which is the most
useful, has inner loops with a recurrence. For this benchmark,
we have tested two versions: one unrolls 4 times the outer loop
with byte accesses, while the second unrolls 4 times the inner
loop with word accesses. The corresponding results are
presented in Table 5 and 6. Unrolling the outer loop gives
slightly better results (about 12.5 CPP versus 14.1 CPP) as
parallel computations are possible in the inner loops. However,
it cannot benefit from word accesses. On the other hand,
unrolling the inner loops benefit from word accesses, but the
recurrence “serializes” the inner loop execution.

N Initial U4J U4J(C2H) Speedup
256 45.09 26.98 2.05 13.16
257 21.09 22.31 2.05 10.88

Table 3: CPP performance for the Deriche gradient

N Initial U4J U4J(C2H) Speedup
256 83.88 27.22 9.01 3.02
260 34.83 16 9.01 1.78

Table 4: CPP performance for the HV version of Deriche
filter

N Initial U4i U4i(C2H) Speedup
256 65.45 50.87 12.53 4.06
260 38.8 29.31 12.53 2.34

Table 5: CPP performance for the horizontal version of the
Deriche filter (outer loop unrolled and byte accesses)

N Initial U4j U4j(C2H) Speedup
256 65.45 30.36 14.08 2.16
260 38.8 29.55 14.08 2.10

 3

Table 6: CPP performance for the horizontal version of the
Deriche filter (inner loops unrolled and word accesses).

3.3 Harris benchmark.
The Harris benchmark (Figure 2) is more challenging. It
includes successively a Sobel filter and a Gauss gradient before
the final computation and should be decomposed into several
functions. Again, we must trade-off computations and memory
accesses. We have tried two different decompositions. In the
first one, the first function includes the Sobel filters and the
multiplications (Ix*Ix, Ix*Iy and Iy*Iy) and the second function
includes the Gauss gradient and the final computation. This
decomposition disadvantage is that both functions have input
and output arrays of different sizes (byte arrays and word
arrays). In the second decomposition, the first function only
includes the Sobel filters and the second one the remaining part
of the computation. The second decomposition is more efficient.
In this decomposition, the F1 function (Sobel filter) inner loop
is 4-times unrolled with word accesses. The F2 function has
byte accesses and balanced memory accesses and computation
between outer and inner loops to reduce both.
The CPP performances are given in Table 7 and the accelerated
loop features in Table 8. The overall speedup is close to 10 and
even greater when N = 2k. However, to obtain such a speedup,
the original C code should be significantly transformed by
choosing the best decompositions into different functions to
minimize both the memory accesses and the amount of
computations.

N 256 260
Initial 517.76 172.04
F1 38.58 38.66
F2 146.76 120.95
F1+F2 185.35 159.61
F1(C2H) 2.5 2.5
F2(C2H) 14.05 14.05
Overall (C2H) 16.55 16.55
Speedup 11.20 9.64

Table 7: CPP performance for Harris benchmark.

 OL-LL OL-CPLI IL-LL IL-CPLI
F1 12 10 14 7
F2 21 19 22 12

Table 8: Loop latency and Cycles per loop iteration for
Harris accelerated outer and inner loops.

3.4 Optical flow benchmark.
The optical flow benchmark corresponds to only one function.
We used int arrays for inputs and outputs. As with previous
benchmarks, we access the elements of column 0 and 1 in the
outer loop and we access of column j+1 in the inner loop. For
the C2H accelerator, the loop latencies/cycles per loop iteration
are respectively 21/19 and 31/22 for the outer and inner loops.
CPP results are given in Table 9.

N Initial F1 F1(C2H) Speedup
128 205.1 31.85 6.44
132 207.5 31.88 6.51

Table 9: CPP performance for the optical flow.

4. Hardware costs
For several benchmarks, we have looked at the hardware
implementation of the different accelerators. We should
mention that we tried to get significant speedups on the
execution times without trying to minimize the hardware cost.
In this section, we present the hardware cost of the accelerator
as the percentage of available resources on the FPGA device
that are used for the accelerator. This can be compared to the
percentage of resources that are used to implement the NIOS II
processor. We focus on the number Adaptative Logic Module
(ALM) and the number of DSP elements (that are equivalent to
9 bit x 9 bit multipliers). The Stratix II device has 24,176
ALMs and 288 DSP elements.
Table 10 presents the percentage of available resources used by
the different accelerators. As previously mentioned, the
horizontal version of the Deriche filter uses either one or the
other accelerators. For Harris, both F1 and F2 are used. The
Harris row is the sum of F1 and F2 rows.

 ALMs DSP Elements
CPU 4.62% 2.78%

Deriche_H U4i 5.12% 66.67%
Deriche_H U4j 14.61% 30.56%

Harris F1 3.99% 13.89%
Harris F2 7.25% 30.21%

Harris 11.24% 44.10%
Optical flow 23.25% 16.67%

 Table 10: Percentage of available hardware resources used
by the NIOS II CPU and the different accelerators.

For all benchmarks that are considered in Table 10, the
accelerators use more hardware resources than the 32-bit NIOS
II RISC CPU. On the other hand, the hardware resources that
are used by the accelerators use less than 25% of the available
ALMs and less than 50% of the DSP elements, except for the
Deriche_H U4i version that use 2/3 of the DSP elements.
Again, we notice that we didn’t focus on the minimization of
hardware resources.

5. Advantages and issues of C2H compilation.
In other papers, we have considered the customization of 16-bit
SIMD integer and floating point instructions and evaluated the
SIMD performance with the benchmarks that we used in this
paper. Even if 32-bit memory accesses allow loading and
storing 4 bytes, 2x16-bit integer arithmetic SIMD instructions
are needed to deal with carry propagation. It means that the
maximal speedup that can deliver SIMD instructions is 2.
Obviously, the maximal speedup provided by 16-bit SIMD
floating point instruction is also 2.
With C2H compilation, the maximal speedup that can be
obtained with 32-bit accesses when computing byte values is 4
as the four bytes can be simultaneously computed. However,
this pseudo-SIMD computation uses more hardware that what
would actually be needed. As the C language doesn’t provide a
simple way to access individual bytes inside a 4-byte word, the
parallel computation of the 4 different bytes is done by

 4

- Masking each individual byte with 0xFF, 0xFF00, 0xFF0000
and 0xFF000000 individual masks.

- Shifting by 0, 8, 16 and 24 bit right the results of the
previously masked integers.

- Doing the parallel computation required by the function,
either as 16-bit computation or 32-bit computation. The
computation generally delivers results within an 8-bit range.

- Shifting by 0, 8, 16 and 24 bit left the results of the previous
step

- Merging the four different results to get the final 32-bit word
including the 4-byte word to store in memory.

These different steps are “simulating” SIMD computation, but
use more hardware resources than what would be needed if
SIMD computation could be described with the C language.

6 Concluding remarks
We have tested the Altera C2H compiler on image processing
benchmarks, from a typical high pass filter corresponding to low
level processing up to more significant benchmarks used for
image stabilization in robotics.
To get a significant C2H compiler efficiency, a good expertise
of program optimizations is needed. The functions that we have
accelerated have been transformed from the original versions,
using decomposition in different functions, loop unrolling and
techniques to reduce the number of memory accesses.
After these transformations, the C2H compiler is rather efficient
on these benchmarks, which are not trivial ones. Speedups in
the 6 to 10 range have been obtained when there is no
significant obstacle to parallelism. Even for the horizontal
version of Deriche filter, which has a recurrence in the inner
loop, a speedup greater than 2 has been obtained in a situation
where it is impossible to use SIMD parallelism.
These tests have been done with a 4-year old 1.6 GHz, 256-MB
Pentium 4 laptop. According to the benchmarks, the overall
time needed to build software, generate SOPC builder system
and run Quartus II compilation ranges from one to several
hours. Programs should be carefully prepared to avoid
discovering mistakes in the description of an accelerated
function… several hours later.

References
[1] Altera, “NIOS Custom Instructions, Tutorial”, June 2002,
http://www.altera.com/literature/tt/tt_nios_ci.pdf

[2] Altera, “NIOS II C2H Compiler User Guide”, May 2006,
www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

[3]] Benchmark code : http://www.lri.fr/~de/F16/code-C2H

[4] D. Etiemble, S. Bouaziz and L. Lacassagne, "Customizing
16-bit floating-point instructions on a NIOS II processor for
FPGA image and media processing", in IEEE Workshop on
Embedded Systems for Real Time Media Processing
(Estimedia), Jersey City, September 2005.

