1 | /* |
---|
2 | * hal_special.c - implementation of Generic Special Register Access API for TSAR-MIPS32 |
---|
3 | * |
---|
4 | * Author Alain Greiner (2016,2017) |
---|
5 | * |
---|
6 | * Copyright (c) UPMC Sorbonne Universites |
---|
7 | * |
---|
8 | * This file is part of ALMOS-MKH.. |
---|
9 | * |
---|
10 | * ALMOS-MKH. is free software; you can redistribute it and/or modify it |
---|
11 | * under the terms of the GNU General Public License as published by |
---|
12 | * the Free Software Foundation; version 2.0 of the License. |
---|
13 | * |
---|
14 | * ALMOS-MKH. is distributed in the hope that it will be useful, but |
---|
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | * General Public License for more details. |
---|
18 | * |
---|
19 | * You should have received a copy of the GNU General Public License |
---|
20 | * along with ALMOS-MKH.; if not, write to the Free Software Foundation, |
---|
21 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
---|
22 | */ |
---|
23 | |
---|
24 | |
---|
25 | #include <hal_kernel_types.h> |
---|
26 | #include <hal_special.h> |
---|
27 | #include <hal_exception.h> |
---|
28 | #include <core.h> |
---|
29 | #include <thread.h> |
---|
30 | |
---|
31 | /**** Forward declarations ****/ |
---|
32 | |
---|
33 | struct thread_s; |
---|
34 | |
---|
35 | |
---|
36 | ////////////////////////////////////////////////////////////////////////////////// |
---|
37 | // Extern global variables |
---|
38 | ////////////////////////////////////////////////////////////////////////////////// |
---|
39 | |
---|
40 | extern cxy_t local_cxy; |
---|
41 | extern void hal_kentry_enter( void ); |
---|
42 | |
---|
43 | //////////////////////////////////////////////////////////////////////////////// |
---|
44 | // For the TSAR architecture, this function registers the address of the |
---|
45 | // hal_kentry_enter() function in the MIPS32 cp0_ebase register. |
---|
46 | //////////////////////////////////////////////////////////////////////////////// |
---|
47 | void hal_set_kentry( void ) |
---|
48 | { |
---|
49 | uint32_t kentry = (uint32_t)(&hal_kentry_enter); |
---|
50 | |
---|
51 | asm volatile("mtc0 %0, $15, 1" : : "r" (kentry) ); |
---|
52 | } |
---|
53 | |
---|
54 | ///////////////////////////////////////////////////////////////////////////////// |
---|
55 | // For the TSAR architecture, this function register the physical address of |
---|
56 | // the first level page table (PT1) in the PTPR register. |
---|
57 | // It activates the intructions MMU, and de-activates the data MMU. |
---|
58 | ///////////////////////////////////////////////////////////////////////////////// |
---|
59 | void hal_mmu_init( gpt_t * gpt ) |
---|
60 | { |
---|
61 | // set PT1 base address in cp2_ptpr register |
---|
62 | uint32_t ptpr = (((uint32_t)gpt->ptr) >> 13) | (local_cxy << 19); |
---|
63 | asm volatile ( "mtc2 %0, $0 \n" : : "r" (ptpr) ); |
---|
64 | |
---|
65 | // set ITLB | ICACHE | DCACHE bits in cp2_mode register |
---|
66 | asm volatile ( "ori $26, $0, 0xB \n" |
---|
67 | "mtc2 $26, $1 \n" ); |
---|
68 | } |
---|
69 | |
---|
70 | //////////////////////////////////////////////////////////////////////////////// |
---|
71 | // For the TSAR architecture, this function returns the current value |
---|
72 | // of the 32 bits c0_sr register |
---|
73 | //////////////////////////////////////////////////////////////////////////////// |
---|
74 | inline reg_t hal_get_sr( void ) |
---|
75 | { |
---|
76 | reg_t sr; |
---|
77 | |
---|
78 | asm volatile ("mfc0 %0, $12" : "=&r" (sr)); |
---|
79 | |
---|
80 | return sr; |
---|
81 | } |
---|
82 | |
---|
83 | //////////////////////////////////////////////////////////////////////////////// |
---|
84 | // For the TSAR architecture, this function returns the 10 LSB bits |
---|
85 | // of the 32 bits c0_ebase register : Y (4 bits) | Y (4 bits) | LID (2 bits) |
---|
86 | //////////////////////////////////////////////////////////////////////////////// |
---|
87 | inline gid_t hal_get_gid( void ) |
---|
88 | { |
---|
89 | uint32_t proc_id; |
---|
90 | |
---|
91 | asm volatile ("mfc0 %0, $15, 1" : "=&r" (proc_id)); |
---|
92 | |
---|
93 | return (proc_id & 0x3FF); // 4/4/2 format for TSAR |
---|
94 | } |
---|
95 | |
---|
96 | //////////////////////////////////////////////////////////////////////////////// |
---|
97 | // For the TSAR architecture, this function returns the current value |
---|
98 | // of the 32 bits c0_count cycle counter. |
---|
99 | //////////////////////////////////////////////////////////////////////////////// |
---|
100 | inline reg_t hal_time_stamp( void ) |
---|
101 | { |
---|
102 | reg_t count; |
---|
103 | |
---|
104 | asm volatile ("mfc0 %0, $9" : "=&r" (count)); |
---|
105 | |
---|
106 | return count; |
---|
107 | } |
---|
108 | |
---|
109 | /////////////////////////////// |
---|
110 | uint64_t hal_get_cycles( void ) |
---|
111 | { |
---|
112 | uint64_t cycles; // absolute time to be returned |
---|
113 | uint32_t last_count; // last registered cycles count |
---|
114 | uint32_t current_count; // current cycles count |
---|
115 | uint32_t elapsed; |
---|
116 | |
---|
117 | core_t * core = CURRENT_THREAD->core; |
---|
118 | |
---|
119 | // get last registered time stamp |
---|
120 | last_count = core->time_stamp; |
---|
121 | |
---|
122 | // get current time stamp from hardware register |
---|
123 | current_count = hal_time_stamp(); |
---|
124 | |
---|
125 | // compute number of elapsed cycles, taking into account 32 bits register wrap |
---|
126 | if(current_count < last_count) elapsed = (0xFFFFFFFF - last_count) + current_count; |
---|
127 | else elapsed = current_count - last_count; |
---|
128 | |
---|
129 | // compute absolute time |
---|
130 | cycles = core->cycles + elapsed; |
---|
131 | |
---|
132 | // update core time |
---|
133 | core->time_stamp = current_count; |
---|
134 | core->cycles = cycles; |
---|
135 | |
---|
136 | hal_fence(); |
---|
137 | |
---|
138 | return cycles; |
---|
139 | } |
---|
140 | |
---|
141 | //////////////////////////////////////////////////////////////////////////////// |
---|
142 | // For the TSAR architecture, this function returns the current value |
---|
143 | // of the 32 bits c0_th register. |
---|
144 | //////////////////////////////////////////////////////////////////////////////// |
---|
145 | inline struct thread_s * hal_get_current_thread( void ) |
---|
146 | { |
---|
147 | void * thread_ptr; |
---|
148 | |
---|
149 | asm volatile ("mfc0 %0, $4, 2" : "=&r" (thread_ptr)); |
---|
150 | |
---|
151 | return thread_ptr; |
---|
152 | } |
---|
153 | |
---|
154 | //////////////////////////////////////////////////////////////////////////////// |
---|
155 | // For the TSAR architecture, this function set a new value |
---|
156 | // to the 32 bits c0_th register. |
---|
157 | //////////////////////////////////////////////////////////////////////////////// |
---|
158 | void hal_set_current_thread( struct thread_s * thread ) |
---|
159 | { |
---|
160 | asm volatile ("mtc0 %0, $4, 2" : : "r" (thread)); |
---|
161 | } |
---|
162 | |
---|
163 | /////////////////////////// |
---|
164 | void hal_fpu_enable( void ) |
---|
165 | { |
---|
166 | // set CU1 bit (FPU enable) in c0_sr |
---|
167 | asm volatile |
---|
168 | ( ".set noat \n" |
---|
169 | "lui $27, 0x2000 \n" |
---|
170 | "mfc0 $1, $12 \n" |
---|
171 | "or $27, $1, $27 \n" |
---|
172 | "mtc0 $27, $12 \n" |
---|
173 | ".set at \n" ); |
---|
174 | |
---|
175 | // set CU1 bit in calling thread UZONE |
---|
176 | uint32_t * uzone = CURRENT_THREAD->uzone_current; |
---|
177 | uzone[34] |= 0x20000000; |
---|
178 | } |
---|
179 | |
---|
180 | //////////////////////////// |
---|
181 | void hal_fpu_disable( void ) |
---|
182 | { |
---|
183 | // reset CU1 bit (FPU enable) in c0_sr |
---|
184 | asm volatile |
---|
185 | ( ".set noat \n" |
---|
186 | "lui $27, 0xDFFF \n" |
---|
187 | "ori $27, $27, 0xFFFF \n" |
---|
188 | "mfc0 $1, $12 \n" |
---|
189 | "and $27, $1, $27 \n" |
---|
190 | "mtc0 $27, $12 \n" |
---|
191 | ".set at \n"); |
---|
192 | |
---|
193 | // reset CU1 bit in calling thread UZONE |
---|
194 | uint32_t * uzone = CURRENT_THREAD->uzone_current; |
---|
195 | uzone[34] &= 0xDFFFFFFF; |
---|
196 | } |
---|
197 | |
---|
198 | //////////////////////////////////////////////////////////////////////////////// |
---|
199 | // For the TSAR architecture, this function returns the current value |
---|
200 | // of the 32 bits sp_29 register. |
---|
201 | //////////////////////////////////////////////////////////////////////////////// |
---|
202 | reg_t hal_get_sp( void ) |
---|
203 | { |
---|
204 | register uint32_t sp; |
---|
205 | |
---|
206 | asm volatile ("or %0, $0, $29" : "=&r" (sp)); |
---|
207 | |
---|
208 | return sp; |
---|
209 | } |
---|
210 | |
---|
211 | ////////////////////////////////// |
---|
212 | uint32_t hal_get_bad_vaddr( void ) |
---|
213 | { |
---|
214 | register uint32_t bad_va; |
---|
215 | |
---|
216 | asm volatile |
---|
217 | ( "mfc0 %0, $8 \n" |
---|
218 | : "=&r" (bad_va) ); |
---|
219 | |
---|
220 | return bad_va; |
---|
221 | } |
---|
222 | |
---|
223 | //////////////////////////////////////////// |
---|
224 | uint32_t hal_uncached_read( uint32_t * ptr ) |
---|
225 | { |
---|
226 | register uint32_t val; |
---|
227 | |
---|
228 | asm volatile |
---|
229 | ( "ll %0, (%1) \n" |
---|
230 | : "=&r"(val) : "r" (ptr) ); |
---|
231 | |
---|
232 | return val; |
---|
233 | } |
---|
234 | |
---|
235 | ////////////////////////////////////////// |
---|
236 | void hal_invalid_dcache_line( void * ptr ) |
---|
237 | { |
---|
238 | asm volatile |
---|
239 | ( "cache %0, (%1) \n" |
---|
240 | "sync \n" |
---|
241 | : : "i" (0x11) , "r" (ptr) ); |
---|
242 | } |
---|
243 | |
---|
244 | ///////////////////////////// |
---|
245 | inline void hal_fence( void ) |
---|
246 | { |
---|
247 | asm volatile ("sync"); |
---|
248 | } |
---|
249 | |
---|
250 | ///////////////////////////// |
---|
251 | inline void hal_rdbar( void ) |
---|
252 | { |
---|
253 | asm volatile( "" ::: "memory" ); |
---|
254 | } |
---|
255 | |
---|
256 | /////////////////////////// |
---|
257 | void hal_core_sleep( void ) |
---|
258 | { |
---|
259 | while( 1 ) asm volatile ("wait"); |
---|
260 | } |
---|
261 | |
---|
262 | ////////////////////////////////////// |
---|
263 | void hal_fixed_delay( uint32_t delay ) |
---|
264 | { |
---|
265 | asm volatile |
---|
266 | ( ".set noreorder \n" |
---|
267 | "or $27, %0, $0 \n" |
---|
268 | "1: \n" |
---|
269 | "addi $27, $27, -1 \n" |
---|
270 | "nop \n" |
---|
271 | "bne $27, $0, 1b \n" |
---|
272 | "nop \n" |
---|
273 | ".set reorder \n" |
---|
274 | : : "r" (delay>>2) : "$27" ); |
---|
275 | } |
---|
276 | |
---|
277 | ////////////////////////////////////////////////// |
---|
278 | void hal_get_mmu_excp( intptr_t * mmu_ins_excp_code, |
---|
279 | intptr_t * mmu_ins_bad_vaddr, |
---|
280 | intptr_t * mmu_dat_excp_code, |
---|
281 | intptr_t * mmu_dat_bad_vaddr ) |
---|
282 | { |
---|
283 | asm volatile |
---|
284 | ( "mfc2 %0, $11 \n" |
---|
285 | "mfc2 %1, $13 \n" |
---|
286 | "mfc2 %2, $12 \n" |
---|
287 | "mfc2 %3, $14 \n" |
---|
288 | : "=&r"(*mmu_ins_excp_code), |
---|
289 | "=&r"(*mmu_ins_bad_vaddr), |
---|
290 | "=&r"(*mmu_dat_excp_code), |
---|
291 | "=&r"(*mmu_dat_bad_vaddr) ); |
---|
292 | } |
---|
293 | |
---|