source: trunk/kernel/kern/thread.c @ 416

Last change on this file since 416 was 416, checked in by alain, 7 years ago

Improve sys_exec.

File size: 32.0 KB
Line 
1/*
2 * thread.c -  implementation of thread operations (user & kernel)
3 *
4 * Author  Ghassan Almaless (2008,2009,2010,2011,2012)
5 *         Alain Greiner (2016,2017)
6 *
7 * Copyright (c) UPMC Sorbonne Universites
8 *
9 * This file is part of ALMOS-MKH.
10 *
11 * ALMOS-MKH is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; version 2.0 of the License.
14 *
15 * ALMOS-MKH is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with ALMOS-MKH; if not, write to the Free Software Foundation,
22 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 */
24
25#include <kernel_config.h>
26#include <hal_types.h>
27#include <hal_context.h>
28#include <hal_irqmask.h>
29#include <hal_special.h>
30#include <hal_remote.h>
31#include <memcpy.h>
32#include <printk.h>
33#include <cluster.h>
34#include <process.h>
35#include <scheduler.h>
36#include <dev_pic.h>
37#include <core.h>
38#include <list.h>
39#include <xlist.h>
40#include <page.h>
41#include <kmem.h>
42#include <ppm.h>
43#include <thread.h>
44
45//////////////////////////////////////////////////////////////////////////////////////
46// Extern global variables
47//////////////////////////////////////////////////////////////////////////////////////
48
49extern process_t      process_zero;
50
51//////////////////////////////////////////////////////////////////////////////////////
52// This function returns a printable string for the thread type.
53//////////////////////////////////////////////////////////////////////////////////////
54char * thread_type_str( uint32_t type )
55{
56    if     ( type == THREAD_USER   ) return "USR";
57    else if( type == THREAD_RPC    ) return "RPC";
58    else if( type == THREAD_DEV    ) return "DEV";
59    else if( type == THREAD_IDLE   ) return "IDL";
60    else                             return "undefined";
61}
62
63/////////////////////////////////////////////////////////////////////////////////////
64// This static function allocates physical memory for a thread descriptor.
65// It can be called by the three functions:
66// - thread_user_create()
67// - thread_user_fork()
68// - thread_kernel_create()
69/////////////////////////////////////////////////////////////////////////////////////
70// @ return pointer on thread descriptor if success / return NULL if failure.
71/////////////////////////////////////////////////////////////////////////////////////
72static thread_t * thread_alloc()
73{
74        page_t       * page;   // pointer on page descriptor containing thread descriptor
75        kmem_req_t     req;    // kmem request
76
77        // allocates memory for thread descriptor + kernel stack
78        req.type  = KMEM_PAGE;
79        req.size  = CONFIG_THREAD_DESC_ORDER;
80        req.flags = AF_KERNEL | AF_ZERO;
81        page      = kmem_alloc( &req );
82
83        if( page == NULL ) return NULL;
84
85    // return pointer on new thread descriptor
86    xptr_t base_xp = ppm_page2base( XPTR(local_cxy , page ) );
87    return (thread_t *)GET_PTR( base_xp );
88
89}  // end thread_alloc()
90 
91
92/////////////////////////////////////////////////////////////////////////////////////
93// This static function releases the physical memory for a thread descriptor.
94// It is called by the three functions:
95// - thread_user_create()
96// - thread_user_fork()
97// - thread_kernel_create()
98/////////////////////////////////////////////////////////////////////////////////////
99// @ thread  : pointer on thread descriptor.
100/////////////////////////////////////////////////////////////////////////////////////
101static void thread_release( thread_t * thread )
102{
103    kmem_req_t   req;
104
105    xptr_t base_xp = ppm_base2page( XPTR(local_cxy , thread ) );
106
107    req.type  = KMEM_PAGE;
108    req.ptr   = GET_PTR( base_xp );
109    kmem_free( &req );
110}
111
112/////////////////////////////////////////////////////////////////////////////////////
113// This static function initializes a thread descriptor (kernel or user).
114// It can be called by the three functions:
115// - thread_user_create()
116// - thread_user_fork()
117// - thread_kernel_create()
118/////////////////////////////////////////////////////////////////////////////////////
119// @ thread       : pointer on thread descriptor
120// @ process      : pointer on process descriptor.
121// @ type         : thread type.
122// @ func         : pointer on thread entry function.
123// @ args         : pointer on thread entry function arguments.
124// @ core_lid     : target core local index.
125// @ u_stack_base : stack base (user thread only)
126// @ u_stack_size : stack base (user thread only)
127/////////////////////////////////////////////////////////////////////////////////////
128static error_t thread_init( thread_t      * thread,
129                            process_t     * process,
130                            thread_type_t   type,
131                            void          * func,
132                            void          * args,
133                            lid_t           core_lid,
134                            intptr_t        u_stack_base,
135                            uint32_t        u_stack_size )
136{
137    error_t        error;
138    trdid_t        trdid;      // allocated thread identifier
139
140        cluster_t    * local_cluster = LOCAL_CLUSTER;
141
142    // register new thread in process descriptor, and get a TRDID
143    spinlock_lock( &process->th_lock );
144    error = process_register_thread( process, thread , &trdid );
145    spinlock_unlock( &process->th_lock );
146
147    if( error )
148    {
149        printk("\n[ERROR] in %s : cannot get TRDID\n", __FUNCTION__ );
150        return EINVAL;
151    }
152
153    // compute thread descriptor size without kernel stack
154    uint32_t desc_size = (intptr_t)(&thread->signature) - (intptr_t)thread + 4; 
155
156        // Initialize new thread descriptor
157    thread->trdid           = trdid;
158        thread->type            = type;
159    thread->quantum         = 0;            // TODO
160    thread->ticks_nr        = 0;            // TODO
161    thread->time_last_check = 0;
162        thread->core            = &local_cluster->core_tbl[core_lid];
163        thread->process         = process;
164
165    thread->local_locks     = 0;
166    thread->remote_locks    = 0;
167
168#if CONFIG_LOCKS_DEBUG
169    list_root_init( &thread->locks_root ); 
170    xlist_root_init( XPTR( local_cxy , &thread->xlocks_root ) );
171#endif
172
173    thread->u_stack_base    = u_stack_base;
174    thread->u_stack_size    = u_stack_size;
175    thread->k_stack_base    = (intptr_t)thread + desc_size;
176    thread->k_stack_size    = CONFIG_THREAD_DESC_SIZE - desc_size;
177
178    thread->entry_func      = func;         // thread entry point
179    thread->entry_args      = args;         // thread function arguments
180    thread->flags           = 0;            // all flags reset
181    thread->errno           = 0;            // no error detected
182    thread->fork_user       = 0;            // no user defined placement for fork
183    thread->fork_cxy        = 0;            // user defined target cluster for fork
184    thread->blocked         = THREAD_BLOCKED_GLOBAL;
185
186    // reset children list
187    xlist_root_init( XPTR( local_cxy , &thread->children_root ) );
188    thread->children_nr = 0;
189
190    // reset sched list and brothers list
191    list_entry_init( &thread->sched_list );
192    xlist_entry_init( XPTR( local_cxy , &thread->brothers_list ) );
193
194    // reset thread info
195    memset( &thread->info , 0 , sizeof(thread_info_t) );
196
197    // initializes join_lock
198    remote_spinlock_init( XPTR( local_cxy , &thread->join_lock ) );
199
200    // initialise signature
201        thread->signature = THREAD_SIGNATURE;
202
203    // FIXME call hal_thread_init() function to initialise the save_sr field
204    thread->save_sr = 0xFF13;
205
206    // update local DQDT
207    dqdt_local_update_threads( 1 );
208
209    // register new thread in core scheduler
210    sched_register_thread( thread->core , thread );
211
212        return 0;
213
214} // end thread_init()
215
216/////////////////////////////////////////////////////////
217error_t thread_user_create( pid_t             pid,
218                            void            * start_func,
219                            void            * start_arg,
220                            pthread_attr_t  * attr,
221                            thread_t       ** new_thread )
222{
223    error_t        error;
224        thread_t     * thread;       // pointer on created thread descriptor
225    process_t    * process;      // pointer to local process descriptor
226    lid_t          core_lid;     // selected core local index
227    vseg_t       * vseg;         // stack vseg
228
229    assert( (attr != NULL) , __FUNCTION__, "pthread attributes must be defined" );
230
231    // get process descriptor local copy
232    process = process_get_local_copy( pid );
233
234    if( process == NULL )
235    {
236                printk("\n[ERROR] in %s : cannot get process descriptor %x\n",
237               __FUNCTION__ , pid );
238        return ENOMEM;
239    }
240
241    // select a target core in local cluster
242    if( attr->attributes & PT_ATTR_CORE_DEFINED )
243    {
244        core_lid = attr->lid;
245        if( core_lid >= LOCAL_CLUSTER->cores_nr )
246        {
247                printk("\n[ERROR] in %s : illegal core index attribute = %d\n",
248            __FUNCTION__ , core_lid );
249            return EINVAL;
250        }
251    }
252    else
253    {
254        core_lid = cluster_select_local_core();
255    }
256
257    // allocate a stack from local VMM
258    vseg = vmm_create_vseg( process,
259                            VSEG_TYPE_STACK,
260                            0,                 // size unused
261                            0,                 // length unused
262                            0,                 // file_offset unused
263                            0,                 // file_size unused
264                            XPTR_NULL,         // mapper_xp unused
265                            local_cxy );
266
267    if( vseg == NULL )
268    {
269            printk("\n[ERROR] in %s : cannot create stack vseg\n", __FUNCTION__ );
270                return ENOMEM;
271    }
272
273    // allocate memory for thread descriptor
274    thread = thread_alloc();
275
276    if( thread == NULL )
277    {
278            printk("\n[ERROR] in %s : cannot create new thread\n", __FUNCTION__ );
279        vmm_remove_vseg( vseg );
280        return ENOMEM;
281    }
282
283    // initialize thread descriptor
284    error = thread_init( thread,
285                         process,
286                         THREAD_USER,
287                         start_func,
288                         start_arg,
289                         core_lid,
290                         vseg->min,
291                         vseg->max - vseg->min );
292
293    if( error )
294    {
295            printk("\n[ERROR] in %s : cannot initialize new thread\n", __FUNCTION__ );
296        vmm_remove_vseg( vseg );
297        thread_release( thread );
298        return EINVAL;
299    }
300
301    // set DETACHED flag if required
302    if( attr->attributes & PT_ATTR_DETACH ) 
303    {
304        thread->flags |= THREAD_FLAG_DETACHED;
305    }
306
307    // allocate & initialize CPU context
308        if( hal_cpu_context_create( thread ) )
309    {
310            printk("\n[ERROR] in %s : cannot create CPU context\n", __FUNCTION__ );
311        vmm_remove_vseg( vseg );
312        thread_release( thread );
313        return ENOMEM;
314    }
315
316    // allocate  FPU context
317    if( hal_fpu_context_alloc( thread ) )
318    {
319            printk("\n[ERROR] in %s : cannot create FPU context\n", __FUNCTION__ );
320        vmm_remove_vseg( vseg );
321        thread_release( thread );
322        return ENOMEM;
323    }
324
325        // update DQDT for new thread
326    dqdt_local_update_threads( 1 );
327
328thread_dmsg("\n[DBG] %s : core[%x,%d] exit / trdid = %x / process %x / core = %d\n",
329__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid,
330thread->trdid , process->pid , core_lid );
331
332    *new_thread = thread;
333        return 0;
334
335}  // end thread_user_create()
336
337///////////////////////////////////////////////////////
338error_t thread_user_fork( xptr_t      parent_thread_xp,
339                          process_t * child_process,
340                          thread_t ** child_thread )
341{
342    error_t        error;
343        thread_t     * child_ptr;        // local pointer on local child thread
344    lid_t          core_lid;         // selected core local index
345
346    thread_t     * parent_ptr;       // local pointer on remote parent thread
347    cxy_t          parent_cxy;       // parent thread cluster
348    process_t    * parent_process;   // local pointer on parent process
349    xptr_t         parent_gpt_xp;    // extended pointer on parent thread GPT
350
351    void         * func;             // parent thread entry_func
352    void         * args;             // parent thread entry_args
353    intptr_t       base;             // parent thread u_stack_base
354    uint32_t       size;             // parent thread u_stack_size
355    uint32_t       flags;            // parent_thread flags
356    vpn_t          vpn_base;         // parent thread stack vpn_base
357    vpn_t          vpn_size;         // parent thread stack vpn_size
358    reg_t        * uzone;            // parent thread pointer on uzone 
359
360    vseg_t       * vseg;             // child thread STACK vseg
361
362thread_dmsg("\n[DBG] %s : core[%x,%d] enters at cycle %d\n",
363__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , hal_get_cycles() );
364
365    // select a target core in local cluster
366    core_lid = cluster_select_local_core();
367
368    // get cluster and local pointer on parent thread descriptor
369    parent_cxy = GET_CXY( parent_thread_xp );
370    parent_ptr = (thread_t *)GET_PTR( parent_thread_xp );
371
372    // get relevant fields from parent thread
373    func  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_func   ) );
374    args  = (void *)  hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->entry_args   ) );
375    base  = (intptr_t)hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->u_stack_base ) );
376    size  = (uint32_t)hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->u_stack_size ) );
377    flags =           hal_remote_lw ( XPTR( parent_cxy , &parent_ptr->flags        ) );
378    uzone = (reg_t *) hal_remote_lpt( XPTR( parent_cxy , &parent_ptr->uzone        ) );
379
380    vpn_base = base >> CONFIG_PPM_PAGE_SHIFT;
381    vpn_size = size >> CONFIG_PPM_PAGE_SHIFT;
382
383    // get pointer on parent process in parent thread cluster
384    parent_process = (process_t *)hal_remote_lpt( XPTR( parent_cxy,
385                                                        &parent_ptr->process ) );
386 
387    // get extended pointer on parent GPT in parent thread cluster
388    parent_gpt_xp = XPTR( parent_cxy , &parent_process->vmm.gpt );
389
390    // allocate memory for child thread descriptor
391    child_ptr = thread_alloc();
392    if( child_ptr == NULL )
393    {
394        printk("\n[ERROR] in %s : cannot allocate new thread\n", __FUNCTION__ );
395        return -1;
396    }
397
398    // initialize thread descriptor
399    error = thread_init( child_ptr,
400                         child_process,
401                         THREAD_USER,
402                         func,
403                         args,
404                         core_lid,
405                         base,
406                         size );
407    if( error )
408    {
409            printk("\n[ERROR] in %s : cannot initialize child thread\n", __FUNCTION__ );
410        thread_release( child_ptr );
411        return EINVAL;
412    }
413
414    // return child pointer
415    *child_thread = child_ptr;
416
417    // set detached flag if required
418    if( flags & THREAD_FLAG_DETACHED ) child_ptr->flags = THREAD_FLAG_DETACHED;
419
420    // update uzone pointer in child thread descriptor
421    child_ptr->uzone = (char *)((intptr_t)uzone +
422                                (intptr_t)child_ptr - 
423                                (intptr_t)parent_ptr );
424 
425
426    // allocate CPU context for child thread
427        if( hal_cpu_context_alloc( child_ptr ) )
428    {
429            printk("\n[ERROR] in %s : cannot allocate CPU context\n", __FUNCTION__ );
430        thread_release( child_ptr );
431        return -1;
432    }
433
434    // allocate FPU context for child thread
435        if( hal_fpu_context_alloc( child_ptr ) )
436    {
437            printk("\n[ERROR] in %s : cannot allocate FPU context\n", __FUNCTION__ );
438        thread_release( child_ptr );
439        return -1;
440    }
441
442    // create and initialize STACK vseg
443    vseg = vseg_alloc();
444    vseg_init( vseg,
445               VSEG_TYPE_STACK,
446               base,
447               size,
448               vpn_base,
449               vpn_size,
450               0, 0, XPTR_NULL,                         // not a file vseg
451               local_cxy );
452
453    // register STACK vseg in local child VSL
454    vseg_attach( &child_process->vmm , vseg );
455
456    // copy all valid STACK GPT entries   
457    vpn_t          vpn;
458    bool_t         mapped;
459    ppn_t          ppn;
460    for( vpn = vpn_base ; vpn < (vpn_base + vpn_size) ; vpn++ )
461    {
462        error = hal_gpt_pte_copy( &child_process->vmm.gpt,
463                                  parent_gpt_xp,
464                                  vpn,
465                                  true,                 // set cow
466                                  &ppn,
467                                  &mapped );
468        if( error )
469        {
470            vseg_detach( &child_process->vmm , vseg );
471            vseg_free( vseg );
472            thread_release( child_ptr );
473            printk("\n[ERROR] in %s : cannot update child GPT\n", __FUNCTION__ );
474            return -1;
475        }
476
477        // increment page descriptor fork_nr for the referenced page if mapped
478        if( mapped )
479        {
480            xptr_t   page_xp  = ppm_ppn2page( ppn );
481            cxy_t    page_cxy = GET_CXY( page_xp );
482            page_t * page_ptr = (page_t *)GET_PTR( page_xp );
483            hal_remote_atomic_add( XPTR( page_cxy , &page_ptr->fork_nr ) , 1 );
484
485thread_dmsg("\n[DBG] %s : core[%x,%d] copied PTE to child GPT : vpn %x\n",
486__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , vpn );
487
488        }
489    }
490
491    // set COW flag for STAK vseg in parent thread GPT
492    hal_gpt_flip_cow( true,                               // set cow
493                      parent_gpt_xp,
494                      vpn_base,
495                      vpn_size );
496 
497        // update DQDT for child thread
498    dqdt_local_update_threads( 1 );
499
500thread_dmsg("\n[DBG] %s : core[%x,%d] exit / created main thread %x for process %x\n",
501__FUNCTION__, local_cxy, CURRENT_THREAD->core->lid, child_ptr->trdid, child_process->pid );
502
503        return 0;
504
505}  // end thread_user_fork()
506
507/////////////////////////////////////////////////////////
508error_t thread_kernel_create( thread_t     ** new_thread,
509                              thread_type_t   type,
510                              void          * func,
511                              void          * args,
512                                              lid_t           core_lid )
513{
514    error_t        error;
515        thread_t     * thread;       // pointer on new thread descriptor
516
517thread_dmsg("\n[DBG] %s : core[%x,%d] enters / type % / cycle %d\n",
518__FUNCTION__ , local_cxy , core_lid , thread_type_str( type ) , hal_time_stamp() );
519
520    assert( ( (type == THREAD_IDLE) || (type == THREAD_RPC) || (type == THREAD_DEV) ) ,
521    __FUNCTION__ , "illegal thread type" );
522
523    assert( (core_lid < LOCAL_CLUSTER->cores_nr) ,
524            __FUNCTION__ , "illegal core_lid" );
525
526    // allocate memory for new thread descriptor
527    thread = thread_alloc();
528
529    if( thread == NULL ) return ENOMEM;
530
531    // initialize thread descriptor
532    error = thread_init( thread,
533                         &process_zero,
534                         type,
535                         func,
536                         args,
537                         core_lid,
538                         0 , 0 );  // no user stack for a kernel thread
539
540    if( error ) // release allocated memory for thread descriptor
541    {
542        thread_release( thread );
543        return EINVAL;
544    }
545
546    // allocate & initialize CPU context
547        hal_cpu_context_create( thread );
548
549        // update DQDT for kernel thread
550    dqdt_local_update_threads( 1 );
551
552thread_dmsg("\n[DBG] %s : core = [%x,%d] exit / trdid = %x / type %s / cycle %d\n",
553__FUNCTION__, local_cxy, core_lid, thread->trdid, thread_type_str(type), hal_time_stamp() );
554
555    *new_thread = thread;
556        return 0;
557
558} // end thread_kernel_create()
559
560///////////////////////////////////////////////////
561error_t thread_kernel_init( thread_t      * thread,
562                            thread_type_t   type,
563                            void          * func,
564                            void          * args,
565                                            lid_t           core_lid )
566{
567    assert( (type == THREAD_IDLE) , __FUNCTION__ , "illegal thread type" );
568
569    assert( (core_lid < LOCAL_CLUSTER->cores_nr) , __FUNCTION__ , "illegal core index" );
570
571    error_t  error = thread_init( thread,
572                                  &process_zero,
573                                  type,
574                                  func,
575                                  args,
576                                  core_lid,
577                                  0 , 0 );   // no user stack for a kernel thread
578
579    // allocate & initialize CPU context if success
580    if( error == 0 ) hal_cpu_context_create( thread );
581
582    return error;
583
584}  // end thread_kernel_init()
585
586///////////////////////////////////////////////////////////////////////////////////////
587// TODO: check that all memory dynamically allocated during thread execution
588// has been released, using a cache of mmap and malloc requests. [AG]
589///////////////////////////////////////////////////////////////////////////////////////
590void thread_destroy( thread_t * thread )
591{
592        uint32_t     tm_start;
593        uint32_t     tm_end;
594    reg_t        save_sr;
595
596    process_t  * process    = thread->process;
597    core_t     * core       = thread->core;
598
599    thread_dmsg("\n[DBG] %s : enters for thread %x in process %x / type = %s\n",
600                __FUNCTION__ , thread->trdid , process->pid , thread_type_str( thread->type ) );
601
602    assert( (thread->children_nr == 0) , __FUNCTION__ , "still attached children" );
603
604    assert( (thread->local_locks == 0) , __FUNCTION__ , "all local locks not released" );
605
606    assert( (thread->remote_locks == 0) , __FUNCTION__ , "all remote locks not released" );
607
608        tm_start = hal_get_cycles();
609
610    // update intrumentation values
611        process->vmm.pgfault_nr += thread->info.pgfault_nr;
612
613    // release memory allocated for CPU context and FPU context
614        hal_cpu_context_destroy( thread );
615        if ( thread->type == THREAD_USER ) hal_fpu_context_destroy( thread );
616       
617    // release FPU if required
618    // TODO This should be done before calling thread_destroy()
619        hal_disable_irq( &save_sr );
620        if( core->fpu_owner == thread )
621        {
622                core->fpu_owner = NULL;
623                hal_fpu_disable();
624        }
625        hal_restore_irq( save_sr );
626
627    // remove thread from process th_tbl[]
628    // TODO This should be done before calling thread_destroy()
629    ltid_t ltid = LTID_FROM_TRDID( thread->trdid );
630
631        spinlock_lock( &process->th_lock );
632        process->th_tbl[ltid] = XPTR_NULL;
633        process->th_nr--;
634        spinlock_unlock( &process->th_lock );
635       
636    // update local DQDT
637    dqdt_local_update_threads( -1 );
638
639    // invalidate thread descriptor
640        thread->signature = 0;
641
642    // release memory for thread descriptor
643    thread_release( thread );
644
645        tm_end = hal_get_cycles();
646
647        thread_dmsg("\n[DBG] %s : exit for thread %x in process %x / duration = %d\n",
648                       __FUNCTION__, thread->trdid , process->pid , tm_end - tm_start );
649
650}   // end thread_destroy()
651
652/////////////////////////////////////////////////
653void thread_child_parent_link( xptr_t  xp_parent,
654                               xptr_t  xp_child )
655{
656    // get extended pointers on children list root
657    cxy_t      parent_cxy = GET_CXY( xp_parent );
658    thread_t * parent_ptr = (thread_t *)GET_PTR( xp_parent );
659    xptr_t     root       = XPTR( parent_cxy , &parent_ptr->children_root );
660
661    // get extended pointer on children list entry
662    cxy_t      child_cxy  = GET_CXY( xp_child );
663    thread_t * child_ptr  = (thread_t *)GET_PTR( xp_child );
664    xptr_t     entry      = XPTR( child_cxy , &child_ptr->brothers_list );
665
666    // set the link
667    xlist_add_first( root , entry );
668    hal_remote_atomic_add( XPTR( parent_cxy , &parent_ptr->children_nr ) , 1 );
669
670}  // end thread_child_parent_link()
671
672///////////////////////////////////////////////////
673void thread_child_parent_unlink( xptr_t  xp_parent,
674                                 xptr_t  xp_child )
675{
676    // get extended pointer on children list lock
677    cxy_t      parent_cxy = GET_CXY( xp_parent );
678    thread_t * parent_ptr = (thread_t *)GET_PTR( xp_parent );
679    xptr_t     lock       = XPTR( parent_cxy , &parent_ptr->children_lock );
680
681    // get extended pointer on children list entry
682    cxy_t      child_cxy  = GET_CXY( xp_child );
683    thread_t * child_ptr  = (thread_t *)GET_PTR( xp_child );
684    xptr_t     entry      = XPTR( child_cxy , &child_ptr->brothers_list );
685
686    // get the lock
687    remote_spinlock_lock( lock );
688
689    // remove the link
690    xlist_unlink( entry );
691    hal_remote_atomic_add( XPTR( parent_cxy , &parent_ptr->children_nr ) , -1 );
692
693    // release the lock
694    remote_spinlock_unlock( lock );
695
696}  // thread_child_parent_unlink()
697
698//////////////////////////////////////////////////
699inline void thread_set_req_ack( thread_t * target,
700                                uint32_t * rsp_count )
701{
702    reg_t    save_sr;   // for critical section
703
704    // get pointer on target thread scheduler
705    scheduler_t * sched = &target->core->scheduler;
706
707    // wait scheduler ready to handle a new request
708    while( sched->req_ack_pending ) asm volatile( "nop" );
709   
710    // enter critical section
711    hal_disable_irq( &save_sr );
712     
713    // set request in target thread scheduler
714    sched->req_ack_pending = true;
715
716    // set ack request in target thread "flags"
717    hal_atomic_or( &target->flags , THREAD_FLAG_REQ_ACK );
718
719    // set pointer on responses counter in target thread
720    target->ack_rsp_count = rsp_count;
721   
722    // exit critical section
723    hal_restore_irq( save_sr );
724
725    hal_fence();
726
727}  // thread_set_req_ack()
728
729/////////////////////////////////////////////////////
730inline void thread_reset_req_ack( thread_t * target )
731{
732    reg_t    save_sr;   // for critical section
733
734    // get pointer on target thread scheduler
735    scheduler_t * sched = &target->core->scheduler;
736
737    // check signal pending in scheduler
738    assert( sched->req_ack_pending , __FUNCTION__ , "no pending signal" );
739   
740    // enter critical section
741    hal_disable_irq( &save_sr );
742     
743    // reset signal in scheduler
744    sched->req_ack_pending = false;
745
746    // reset signal in thread "flags"
747    hal_atomic_and( &target->flags , ~THREAD_FLAG_REQ_ACK );
748
749    // reset pointer on responses counter
750    target->ack_rsp_count = NULL;
751   
752    // exit critical section
753    hal_restore_irq( save_sr );
754
755    hal_fence();
756
757}  // thread_reset_req_ack()
758
759////////////////////////////////
760inline bool_t thread_can_yield()
761{
762    thread_t * this = CURRENT_THREAD;
763    return (this->local_locks == 0) && (this->remote_locks == 0);
764}
765
766/////////////////////////
767void thread_check_sched()
768{
769    thread_t * this = CURRENT_THREAD;
770
771        if( (this->local_locks == 0) && 
772        (this->remote_locks == 0) &&
773        (this->flags & THREAD_FLAG_SCHED) ) 
774    {
775        this->flags &= ~THREAD_FLAG_SCHED;
776        sched_yield( "delayed scheduling" );
777    }
778
779}  // end thread_check_sched()
780
781/////////////////////////////////////
782void thread_block( thread_t * thread,
783                   uint32_t   cause )
784{
785    // set blocking cause
786    hal_atomic_or( &thread->blocked , cause );
787    hal_fence();
788
789} // end thread_block()
790
791/////////////////////////////////////////
792uint32_t thread_unblock( xptr_t   thread,
793                         uint32_t cause )
794{
795    // get thread cluster and local pointer
796    cxy_t      cxy = GET_CXY( thread );
797    thread_t * ptr = (thread_t *)GET_PTR( thread );
798
799    // reset blocking cause
800    uint32_t previous = hal_remote_atomic_and( XPTR( cxy , &ptr->blocked ) , ~cause );
801    hal_fence();
802
803    // return a non zero value if the cause bit is modified
804    return( previous & cause );
805
806}  // end thread_unblock()
807
808/////////////////////////////////////
809void thread_kill( thread_t * target )
810{
811    volatile uint32_t  rsp_count = 1;     // responses counter
812
813    thread_t * killer = CURRENT_THREAD;
814
815thread_dmsg("\n[DBG] %s : killer thread %x enter for target thread %x\n",
816__FUNCTION__, local_cxy, killer->trdid , target trdid );
817
818    // set the global blocked bit in target thread descriptor.
819    thread_block( target , THREAD_BLOCKED_GLOBAL );
820
821    // request target scheduler to deschedule the target thread
822    // when killer thread is not running on same core as target thread
823    if( killer->core->lid != target->core->lid )
824    {
825        // set signal in target thread descriptor and in target scheduler
826        thread_set_req_ack( target , (void *)(&rsp_count) );
827
828        // send an IPI to the target thread core.
829        dev_pic_send_ipi( local_cxy , target->core->lid );
830
831        // poll the response
832        while( 1 )
833        {
834            // exit when response received from scheduler
835            if( rsp_count == 0 )  break;
836
837            // deschedule without blocking
838            hal_fixed_delay( 1000 );
839        }
840    }
841
842        // set REQ_DELETE flag
843        hal_atomic_or( &target->flags , THREAD_FLAG_REQ_DELETE );
844
845thread_dmsg("\n[DBG] %s : killer thread %x exit for target thread %x\n",
846__FUNCTION__, local_cxy, killer->trdid , target trdid );
847
848}  // end thread_kill()
849
850///////////////////////
851void thread_idle_func()
852{
853    while( 1 )
854    {
855        // unmask IRQs
856        hal_enable_irq( NULL );
857
858        if( CONFIG_THREAD_IDLE_MODE_SLEEP ) // force core to low-power mode
859        {
860
861idle_dmsg("\n[DBG] %s : core[%x][%d] goes to sleep at cycle %d\n",
862__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , hal_get_cycles() );
863
864            hal_core_sleep();
865
866idle_dmsg("\n[DBG] %s : core[%x][%d] wake up at cycle %d\n",
867__FUNCTION__ , local_cxy , CURRENT_THREAD->core->lid , hal_get_cycles() );
868
869        }
870        else                                // yield each ~ 100000 cycles
871
872        {
873             hal_fixed_delay( 500000 );
874        }
875
876        // force scheduling at each iteration
877        sched_yield( "idle" );
878   }
879}  // end thread_idle()
880
881
882/////////////////////////////////////////////////
883void thread_user_time_update( thread_t * thread )
884{
885    // TODO
886    // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
887}
888
889///////////////////////////////////////////////////
890void thread_kernel_time_update( thread_t * thread )
891{
892    // TODO
893    // printk("\n[WARNING] function %s not implemented\n", __FUNCTION__ );
894}
895
896/////////////////////////////////////
897xptr_t thread_get_xptr( pid_t    pid,
898                        trdid_t  trdid )
899{
900    cxy_t         target_cxy;          // target thread cluster identifier
901    ltid_t        target_thread_ltid;  // target thread local index
902    thread_t    * target_thread_ptr;   // target thread local pointer
903    xptr_t        target_process_xp;   // extended pointer on target process descriptor
904    process_t   * target_process_ptr;  // local pointer on target process descriptor
905    pid_t         target_process_pid;  // target process identifier
906    xlist_entry_t root;                // root of list of process in target cluster
907    xptr_t        lock_xp;             // extended pointer on lock protecting  this list
908
909    // get target cluster identifier and local thread identifier
910    target_cxy         = CXY_FROM_TRDID( trdid );
911    target_thread_ltid = LTID_FROM_TRDID( trdid );
912
913    // get root of list of process descriptors in target cluster
914    hal_remote_memcpy( XPTR( local_cxy  , &root ),
915                       XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ),
916                       sizeof(xlist_entry_t) );
917
918    // get extended pointer on lock protecting the list of processes
919    lock_xp = XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_lock );
920
921    // take the lock protecting the list of processes in target cluster
922    remote_spinlock_lock( lock_xp );
923
924    // loop on list of process in target cluster to find the PID process
925    xptr_t  iter;
926    bool_t  found = false;
927    XLIST_FOREACH( XPTR( target_cxy , &LOCAL_CLUSTER->pmgr.local_root ) , iter )
928    {
929        target_process_xp  = XLIST_ELEMENT( iter , process_t , local_list );
930        target_process_ptr = (process_t *)GET_PTR( target_process_xp );
931        target_process_pid = hal_remote_lw( XPTR( target_cxy , &target_process_ptr->pid ) );
932        if( target_process_pid == pid )
933        {
934            found = true;
935            break;
936        }
937    }
938
939    // release the lock protecting the list of processes in target cluster
940    remote_spinlock_unlock( lock_xp );
941
942    // check target thread found
943    if( found == false )
944    {
945        return XPTR_NULL;
946    }
947
948    // get target thread local pointer
949    xptr_t xp = XPTR( target_cxy , &target_process_ptr->th_tbl[target_thread_ltid] );
950    target_thread_ptr = (thread_t *)hal_remote_lpt( xp );
951
952    if( target_thread_ptr == NULL )
953    {
954        return XPTR_NULL;
955    }
956
957    return XPTR( target_cxy , target_thread_ptr );
958}
959
Note: See TracBrowser for help on using the repository browser.