[527] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 2 | // File : boot.c |
---|
| 3 | // Date : 01/11/2013 |
---|
| 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
[527] | 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 7 | // The boot.c file contains the bootloader for the GIET-VM static OS. |
---|
[258] | 8 | // |
---|
[493] | 9 | // This code has been written for the MIPS32 processor. |
---|
[359] | 10 | // The virtual adresses are on 32 bits and use the (unsigned int) type. The |
---|
[527] | 11 | // physicals addresses can have up to 40 bits, and use type (unsigned long long). |
---|
[412] | 12 | // It natively supports clusterised shared memory multi-processors architectures, |
---|
[493] | 13 | // where each processor is identified by a composite index [x,y,p], |
---|
[258] | 14 | // and where there is one physical memory bank per cluster. |
---|
| 15 | // |
---|
[493] | 16 | // The boot.elf file is stored on disk and is loaded into memory by proc[0,0,0], |
---|
| 17 | // executing the generic preloader (stored in ROM). The boot-loader code itself |
---|
| 18 | // is executed in parallel by all proc[x,y,0], and performs the following tasks: |
---|
| 19 | // - load into memory various binary files, from a FAT32 file system. |
---|
| 20 | // - build the various page tables (one page table per vspace). |
---|
| 21 | // - initialize the shedulers (one scheduler per processor). |
---|
[258] | 22 | // |
---|
| 23 | // 1) The binary files to be loaded are: |
---|
[631] | 24 | // - the "map.bin" file contains the hardware architecture description, |
---|
| 25 | // the set of user applications that will be mapped on the architecture, |
---|
[709] | 26 | // and the mapping directives. The mapping includes the placement of threads |
---|
[631] | 27 | // on processors, and the placement of virtual segments on the physical |
---|
[709] | 28 | // segments. It is stored in the the seg_boot_mapping segment |
---|
[321] | 29 | // (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file). |
---|
[493] | 30 | // - the "kernel.elf" file contains the kernel binary code and data. |
---|
[258] | 31 | // - the various "application.elf" files. |
---|
| 32 | // |
---|
[732] | 33 | // 2) The GIET-VM uses the paged virtual memory to provide two services: |
---|
[258] | 34 | // - classical memory protection, when several independant applications compiled |
---|
| 35 | // in different virtual spaces are executing on the same hardware platform. |
---|
[412] | 36 | // - data placement in NUMA architectures, to control the placement |
---|
| 37 | // of the software objects (vsegs) on the physical memory banks (psegs). |
---|
[527] | 38 | // The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
[709] | 39 | // The page tables are statically build in the boot phase, and they do not |
---|
| 40 | // change during execution. |
---|
| 41 | // For each application, the page tables are replicated in all clusters. |
---|
[412] | 42 | // The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes). |
---|
[527] | 43 | // Each page table (one page table per virtual space) is monolithic, and |
---|
| 44 | // contains one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each). |
---|
[631] | 45 | // For each vspace, the max number of PT2s is defined by the size of the PTAB |
---|
| 46 | // vseg in the mapping. |
---|
[527] | 47 | // The PT1 is indexed by the ix1 field (11 bits) of the VPN. An entry is 32 bits. |
---|
| 48 | // A PT2 is indexed the ix2 field (9 bits) of the VPN. An entry is 64 bits. |
---|
[412] | 49 | // The first word contains the flags, the second word contains the PPN. |
---|
[631] | 50 | // |
---|
| 51 | // 3) The Giet-VM implement one private scheduler per processor. |
---|
[709] | 52 | // For each application, the threads are statically allocated to processors |
---|
| 53 | // and there is no thread migration during execution. |
---|
| 54 | // Each sheduler occupies 8K bytes, and contains up to 14 thread contexts |
---|
| 55 | // The thread context [13] is reserved for the "idle" thread that does nothing, |
---|
| 56 | // and is launched by the scheduler when there is no other runable thread. |
---|
[527] | 57 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[263] | 58 | // Implementation Notes: |
---|
| 59 | // |
---|
[527] | 60 | // 1) The cluster_id variable is a linear index in the mapping_info array. |
---|
[493] | 61 | // The cluster_xy variable is the tological index = x << Y_WIDTH + y |
---|
[412] | 62 | // |
---|
[493] | 63 | // 2) We set the _tty0_boot_mode variable to force the _printf() function to use |
---|
| 64 | // the tty0_spin_lock for exclusive access to TTY0. |
---|
[527] | 65 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 66 | |
---|
[263] | 67 | #include <giet_config.h> |
---|
[464] | 68 | #include <hard_config.h> |
---|
[436] | 69 | #include <mapping_info.h> |
---|
[464] | 70 | #include <kernel_malloc.h> |
---|
[258] | 71 | #include <memspace.h> |
---|
| 72 | #include <tty_driver.h> |
---|
| 73 | #include <xcu_driver.h> |
---|
[347] | 74 | #include <bdv_driver.h> |
---|
[460] | 75 | #include <hba_driver.h> |
---|
[527] | 76 | #include <sdc_driver.h> |
---|
[258] | 77 | #include <cma_driver.h> |
---|
| 78 | #include <nic_driver.h> |
---|
[299] | 79 | #include <iob_driver.h> |
---|
[295] | 80 | #include <pic_driver.h> |
---|
[258] | 81 | #include <mwr_driver.h> |
---|
[527] | 82 | #include <dma_driver.h> |
---|
[631] | 83 | #include <mmc_driver.h> |
---|
[258] | 84 | #include <ctx_handler.h> |
---|
| 85 | #include <irq_handler.h> |
---|
| 86 | #include <vmem.h> |
---|
[412] | 87 | #include <pmem.h> |
---|
[258] | 88 | #include <utils.h> |
---|
[460] | 89 | #include <tty0.h> |
---|
[493] | 90 | #include <kernel_locks.h> |
---|
| 91 | #include <kernel_barriers.h> |
---|
[258] | 92 | #include <elf-types.h> |
---|
| 93 | #include <fat32.h> |
---|
| 94 | #include <mips32_registers.h> |
---|
| 95 | #include <stdarg.h> |
---|
| 96 | |
---|
[263] | 97 | #if !defined(X_SIZE) |
---|
[359] | 98 | # error: The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
[258] | 99 | #endif |
---|
| 100 | |
---|
[263] | 101 | #if !defined(Y_SIZE) |
---|
[359] | 102 | # error: The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
[263] | 103 | #endif |
---|
| 104 | |
---|
| 105 | #if !defined(X_WIDTH) |
---|
[359] | 106 | # error: The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
[263] | 107 | #endif |
---|
| 108 | |
---|
| 109 | #if !defined(Y_WIDTH) |
---|
[359] | 110 | # error: The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
[263] | 111 | #endif |
---|
| 112 | |
---|
[321] | 113 | #if !defined(SEG_BOOT_MAPPING_BASE) |
---|
[359] | 114 | # error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file ! |
---|
[321] | 115 | #endif |
---|
| 116 | |
---|
[359] | 117 | #if !defined(NB_PROCS_MAX) |
---|
| 118 | # error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
[321] | 119 | #endif |
---|
| 120 | |
---|
[359] | 121 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
| 122 | # error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
[321] | 123 | #endif |
---|
| 124 | |
---|
[359] | 125 | #if !defined(GIET_ELF_BUFFER_SIZE) |
---|
| 126 | # error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file ! |
---|
[258] | 127 | #endif |
---|
| 128 | |
---|
| 129 | //////////////////////////////////////////////////////////////////////////// |
---|
| 130 | // Global variables for boot code |
---|
| 131 | //////////////////////////////////////////////////////////////////////////// |
---|
| 132 | |
---|
[412] | 133 | // Temporaty buffer used to load one complete .elf file |
---|
[493] | 134 | __attribute__((section(".kdata"))) |
---|
[590] | 135 | unsigned char _boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(64))); |
---|
[258] | 136 | |
---|
[412] | 137 | // Physical memory allocators array (one per cluster) |
---|
[493] | 138 | __attribute__((section(".kdata"))) |
---|
[527] | 139 | pmem_alloc_t boot_pmem_alloc[X_SIZE][Y_SIZE]; |
---|
[258] | 140 | |
---|
[412] | 141 | // Schedulers virtual base addresses array (one per processor) |
---|
[493] | 142 | __attribute__((section(".kdata"))) |
---|
| 143 | static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX]; |
---|
[258] | 144 | |
---|
[527] | 145 | // Page tables virtual base addresses (one per vspace and per cluster) |
---|
[493] | 146 | __attribute__((section(".kdata"))) |
---|
| 147 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[258] | 148 | |
---|
[412] | 149 | // Page tables physical base addresses (one per vspace and per cluster) |
---|
[493] | 150 | __attribute__((section(".kdata"))) |
---|
| 151 | paddr_t _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[258] | 152 | |
---|
[412] | 153 | // Page tables pt2 allocators (one per vspace and per cluster) |
---|
[493] | 154 | __attribute__((section(".kdata"))) |
---|
| 155 | unsigned int _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[263] | 156 | |
---|
[412] | 157 | // Page tables max_pt2 (same value for all page tables) |
---|
[493] | 158 | __attribute__((section(".kdata"))) |
---|
| 159 | unsigned int _ptabs_max_pt2; |
---|
[412] | 160 | |
---|
[493] | 161 | // boot code uses a spin lock to protect TTY0 |
---|
| 162 | __attribute__((section(".kdata"))) |
---|
| 163 | unsigned int _tty0_boot_mode = 1; |
---|
[490] | 164 | |
---|
[716] | 165 | // boot code does not uses a lock to protect HBA command list |
---|
[493] | 166 | __attribute__((section(".kdata"))) |
---|
[578] | 167 | unsigned int _hba_boot_mode = 1; |
---|
| 168 | |
---|
[709] | 169 | // required for concurrent PTAB building |
---|
[578] | 170 | __attribute__((section(".kdata"))) |
---|
[493] | 171 | spin_lock_t _ptabs_spin_lock[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[490] | 172 | |
---|
[493] | 173 | // barrier used by boot code for parallel execution |
---|
| 174 | __attribute__((section(".kdata"))) |
---|
| 175 | simple_barrier_t _barrier_all_clusters; |
---|
[490] | 176 | |
---|
[527] | 177 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 178 | // Extern variables |
---|
| 179 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 180 | |
---|
[631] | 181 | // this variable is allocated in the tty0.c file |
---|
[493] | 182 | extern spin_lock_t _tty0_spin_lock; |
---|
[464] | 183 | |
---|
[631] | 184 | // this variable is allocated in the mmc_driver.c |
---|
| 185 | extern unsigned int _mmc_boot_mode; |
---|
| 186 | |
---|
[716] | 187 | // these variables are allocated in the bdv_driver.c file |
---|
| 188 | extern spin_lock_t _bdv_lock __attribute__((aligned(64))); |
---|
| 189 | extern unsigned int _bdv_trdid; |
---|
| 190 | extern unsigned int _bdv_status; |
---|
| 191 | |
---|
[527] | 192 | extern void boot_entry(); |
---|
| 193 | |
---|
[258] | 194 | ////////////////////////////////////////////////////////////////////////////// |
---|
[412] | 195 | // This function registers a new PTE1 in the page table defined |
---|
| 196 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
| 197 | // It updates only the first level PT1. |
---|
[493] | 198 | // As each vseg is mapped by a different processor, the PT1 entry cannot |
---|
| 199 | // be concurrently accessed, and we don't need to take any lock. |
---|
[732] | 200 | // |
---|
| 201 | // Implementation note: |
---|
| 202 | // This function checks that the PT1 entry is not already mapped, |
---|
| 203 | // to enforce the rule: only one vseg in a given BPP. |
---|
| 204 | // The 4 vsegs used by the boot code being packed in one single BPP, |
---|
| 205 | // this verif is not done for all identity mapping vsegs. |
---|
[258] | 206 | ////////////////////////////////////////////////////////////////////////////// |
---|
[412] | 207 | void boot_add_pte1( unsigned int vspace_id, |
---|
| 208 | unsigned int x, |
---|
| 209 | unsigned int y, |
---|
| 210 | unsigned int vpn, // 20 bits right-justified |
---|
| 211 | unsigned int flags, // 10 bits left-justified |
---|
[732] | 212 | unsigned int ppn, // 28 bits right-justified |
---|
| 213 | unsigned int ident ) // identity mapping if non zero |
---|
[258] | 214 | { |
---|
[732] | 215 | unsigned int pte1; // PTE1 value |
---|
| 216 | paddr_t paddr; // PTE1 physical address |
---|
| 217 | |
---|
[412] | 218 | // compute index in PT1 |
---|
| 219 | unsigned int ix1 = vpn >> 9; // 11 bits for ix1 |
---|
[258] | 220 | |
---|
[732] | 221 | // get PT1 physical base address |
---|
| 222 | paddr_t pt1_base = _ptabs_paddr[vspace_id][x][y]; |
---|
[412] | 223 | |
---|
[732] | 224 | if ( pt1_base == 0 ) |
---|
[258] | 225 | { |
---|
[493] | 226 | _printf("\n[BOOT ERROR] in boot_add_pte1() : no PTAB in cluster[%d,%d]" |
---|
| 227 | " containing processors\n", x , y ); |
---|
[258] | 228 | _exit(); |
---|
| 229 | } |
---|
| 230 | |
---|
[732] | 231 | // compute pte1 physical address |
---|
| 232 | paddr = pt1_base + 4*ix1; |
---|
| 233 | |
---|
| 234 | // check PTE1 not already mapped |
---|
| 235 | if ( ident == 0 ) |
---|
| 236 | { |
---|
| 237 | if ( _physical_read( paddr ) & PTE_V ) |
---|
| 238 | { |
---|
| 239 | _printf("\n[BOOT ERROR] in boot_add_pte1() : vpn %x already mapped " |
---|
| 240 | "in PTAB[%d,%d] for vspace %d\n", vpn , x , y , vspace_id ); |
---|
| 241 | _exit(); |
---|
| 242 | } |
---|
| 243 | } |
---|
| 244 | |
---|
[412] | 245 | // compute pte1 : 2 bits V T / 8 bits flags / 3 bits RSVD / 19 bits bppi |
---|
[732] | 246 | pte1 = PTE_V | (flags & 0x3FC00000) | ((ppn>>9) & 0x0007FFFF); |
---|
[258] | 247 | |
---|
[412] | 248 | // write pte1 in PT1 |
---|
[732] | 249 | _physical_write( paddr , pte1 ); |
---|
[412] | 250 | |
---|
[493] | 251 | asm volatile ("sync"); |
---|
[412] | 252 | |
---|
| 253 | } // end boot_add_pte1() |
---|
| 254 | |
---|
[258] | 255 | ////////////////////////////////////////////////////////////////////////////// |
---|
[412] | 256 | // This function registers a new PTE2 in the page table defined |
---|
[347] | 257 | // by the vspace_id argument, and the (x,y) coordinates. |
---|
[412] | 258 | // It updates both the first level PT1 and the second level PT2. |
---|
[258] | 259 | // As the set of PT2s is implemented as a fixed size array (no dynamic |
---|
| 260 | // allocation), this function checks a possible overflow of the PT2 array. |
---|
[493] | 261 | // As a given entry in PT1 can be shared by several vsegs, mapped by |
---|
[732] | 262 | // different processors, we need to take the lock protecting PTAB[v][x][y]. |
---|
[258] | 263 | ////////////////////////////////////////////////////////////////////////////// |
---|
[412] | 264 | void boot_add_pte2( unsigned int vspace_id, |
---|
| 265 | unsigned int x, |
---|
| 266 | unsigned int y, |
---|
| 267 | unsigned int vpn, // 20 bits right-justified |
---|
| 268 | unsigned int flags, // 10 bits left-justified |
---|
[732] | 269 | unsigned int ppn, // 28 bits right-justified |
---|
| 270 | unsigned int ident ) // identity mapping if non zero |
---|
[258] | 271 | { |
---|
| 272 | unsigned int ix1; |
---|
| 273 | unsigned int ix2; |
---|
[347] | 274 | paddr_t pt2_pbase; // PT2 physical base address |
---|
[412] | 275 | paddr_t pte2_paddr; // PTE2 physical address |
---|
[258] | 276 | unsigned int pt2_id; // PT2 index |
---|
| 277 | unsigned int ptd; // PTD : entry in PT1 |
---|
| 278 | |
---|
[412] | 279 | ix1 = vpn >> 9; // 11 bits for ix1 |
---|
| 280 | ix2 = vpn & 0x1FF; // 9 bits for ix2 |
---|
[258] | 281 | |
---|
[493] | 282 | // get page table physical base address |
---|
[347] | 283 | paddr_t pt1_pbase = _ptabs_paddr[vspace_id][x][y]; |
---|
[258] | 284 | |
---|
[412] | 285 | if ( pt1_pbase == 0 ) |
---|
[258] | 286 | { |
---|
[493] | 287 | _printf("\n[BOOT ERROR] in boot_add_pte2() : no PTAB for vspace %d " |
---|
| 288 | "in cluster[%d,%d]\n", vspace_id , x , y ); |
---|
[258] | 289 | _exit(); |
---|
| 290 | } |
---|
| 291 | |
---|
[493] | 292 | // get lock protecting PTAB[vspace_id][x][y] |
---|
| 293 | _spin_lock_acquire( &_ptabs_spin_lock[vspace_id][x][y] ); |
---|
| 294 | |
---|
[258] | 295 | // get ptd in PT1 |
---|
[493] | 296 | ptd = _physical_read( pt1_pbase + 4 * ix1 ); |
---|
[258] | 297 | |
---|
[347] | 298 | if ((ptd & PTE_V) == 0) // undefined PTD: compute PT2 base address, |
---|
[258] | 299 | // and set a new PTD in PT1 |
---|
| 300 | { |
---|
[493] | 301 | // get a new pt2_id |
---|
[347] | 302 | pt2_id = _ptabs_next_pt2[vspace_id][x][y]; |
---|
[493] | 303 | _ptabs_next_pt2[vspace_id][x][y] = pt2_id + 1; |
---|
| 304 | |
---|
| 305 | // check overflow |
---|
[412] | 306 | if (pt2_id == _ptabs_max_pt2) |
---|
[258] | 307 | { |
---|
[493] | 308 | _printf("\n[BOOT ERROR] in boot_add_pte2() : PTAB[%d,%d,%d]" |
---|
| 309 | " contains not enough PT2s\n", vspace_id, x, y ); |
---|
[258] | 310 | _exit(); |
---|
| 311 | } |
---|
[347] | 312 | |
---|
| 313 | pt2_pbase = pt1_pbase + PT1_SIZE + PT2_SIZE * pt2_id; |
---|
| 314 | ptd = PTE_V | PTE_T | (unsigned int) (pt2_pbase >> 12); |
---|
[493] | 315 | |
---|
| 316 | // set PTD into PT1 |
---|
[412] | 317 | _physical_write( pt1_pbase + 4*ix1, ptd); |
---|
[258] | 318 | } |
---|
| 319 | else // valid PTD: compute PT2 base address |
---|
| 320 | { |
---|
| 321 | pt2_pbase = ((paddr_t)(ptd & 0x0FFFFFFF)) << 12; |
---|
| 322 | } |
---|
| 323 | |
---|
| 324 | // set PTE in PT2 : flags & PPN in two 32 bits words |
---|
[412] | 325 | pte2_paddr = pt2_pbase + 8 * ix2; |
---|
[493] | 326 | _physical_write(pte2_paddr , (PTE_V | flags) ); |
---|
| 327 | _physical_write(pte2_paddr + 4 , ppn ); |
---|
[258] | 328 | |
---|
[493] | 329 | // release lock protecting PTAB[vspace_id][x][y] |
---|
| 330 | _spin_lock_release( &_ptabs_spin_lock[vspace_id][x][y] ); |
---|
| 331 | |
---|
| 332 | asm volatile ("sync"); |
---|
| 333 | |
---|
[412] | 334 | } // end boot_add_pte2() |
---|
[258] | 335 | |
---|
[412] | 336 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 337 | // Align the value of paddr or vaddr to the required alignement, |
---|
| 338 | // defined by alignPow2 == L2(alignement). |
---|
[412] | 339 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 340 | paddr_t paddr_align_to( paddr_t paddr, unsigned int alignPow2 ) |
---|
[258] | 341 | { |
---|
| 342 | paddr_t mask = (1 << alignPow2) - 1; |
---|
| 343 | return ((paddr + mask) & ~mask); |
---|
| 344 | } |
---|
| 345 | |
---|
[493] | 346 | unsigned int vaddr_align_to( unsigned int vaddr, unsigned int alignPow2 ) |
---|
[258] | 347 | { |
---|
| 348 | unsigned int mask = (1 << alignPow2) - 1; |
---|
| 349 | return ((vaddr + mask) & ~mask); |
---|
| 350 | } |
---|
| 351 | |
---|
[412] | 352 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
| 353 | // This function map a vseg identified by the vseg pointer. |
---|
| 354 | // |
---|
[493] | 355 | // A given vseg can be mapped in a Big Physical Pages (BPP: 2 Mbytes) or in a |
---|
[732] | 356 | // Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg. |
---|
[412] | 357 | // |
---|
[732] | 358 | // All boot vsegs are packed in a single BPP (2 Mbytes). For all other vsegs, |
---|
| 359 | // there is only one vseg in a given page (BPP or SPP), but a single vseg can |
---|
| 360 | // cover several contiguous physical pages. |
---|
| 361 | // Only the vsegs used by the boot code can be identity mapping. |
---|
| 362 | // |
---|
[513] | 363 | // 1) First step: it computes various vseg attributes and checks |
---|
| 364 | // alignment constraints. |
---|
[412] | 365 | // |
---|
[493] | 366 | // 2) Second step: it allocates the required number of contiguous physical pages, |
---|
[412] | 367 | // computes the physical base address (if the vseg is not identity mapping), |
---|
[732] | 368 | // register it in the vseg pbase field, and update the page table(s). |
---|
[412] | 369 | // |
---|
[732] | 370 | // 3) Third step (only for vseg that have the VSEG_TYPE_PTAB): for a given cluster, |
---|
| 371 | // the M page tables associated to the M vspaces are packed in the same vseg. |
---|
[493] | 372 | // We divide this vseg in M sub-segments, and compute the vbase and pbase |
---|
| 373 | // addresses for M page tables, and register these addresses in the _ptabs_paddr |
---|
[412] | 374 | // and _ptabs_vaddr arrays. |
---|
| 375 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
[427] | 376 | void boot_vseg_map( mapping_vseg_t* vseg, |
---|
| 377 | unsigned int vspace_id ) |
---|
[258] | 378 | { |
---|
[412] | 379 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 380 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 381 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
[258] | 382 | |
---|
[513] | 383 | //////////// First step : compute vseg attributes |
---|
| 384 | |
---|
[412] | 385 | // compute destination cluster pointer & coordinates |
---|
| 386 | pseg = pseg + vseg->psegid; |
---|
| 387 | cluster = cluster + pseg->clusterid; |
---|
| 388 | unsigned int x_dest = cluster->x; |
---|
| 389 | unsigned int y_dest = cluster->y; |
---|
[258] | 390 | |
---|
[412] | 391 | // compute the "big" vseg attribute |
---|
| 392 | unsigned int big = vseg->big; |
---|
[258] | 393 | |
---|
[513] | 394 | // all vsegs must be aligned on 4Kbytes |
---|
| 395 | if ( vseg->vbase & 0x00000FFF ) |
---|
| 396 | { |
---|
| 397 | _printf("\n[BOOT ERROR] vseg %s not aligned : vbase = %x\n", |
---|
| 398 | vseg->name, vseg->vbase ); |
---|
| 399 | _exit(); |
---|
| 400 | } |
---|
| 401 | |
---|
[412] | 402 | // compute the "is_ram" vseg attribute |
---|
| 403 | unsigned int is_ram; |
---|
| 404 | if ( pseg->type == PSEG_TYPE_RAM ) is_ram = 1; |
---|
| 405 | else is_ram = 0; |
---|
[258] | 406 | |
---|
[412] | 407 | // compute the "is_ptab" attribute |
---|
| 408 | unsigned int is_ptab; |
---|
[513] | 409 | if ( vseg->type == VSEG_TYPE_PTAB ) is_ptab = 1; |
---|
| 410 | else is_ptab = 0; |
---|
[258] | 411 | |
---|
[427] | 412 | // compute actual vspace index |
---|
| 413 | unsigned int vsid; |
---|
| 414 | if ( vspace_id == 0xFFFFFFFF ) vsid = 0; |
---|
| 415 | else vsid = vspace_id; |
---|
| 416 | |
---|
[412] | 417 | //////////// Second step : compute ppn and npages |
---|
| 418 | //////////// - if identity mapping : ppn <= vpn |
---|
| 419 | //////////// - if vseg is periph : ppn <= pseg.base >> 12 |
---|
| 420 | //////////// - if vseg is ram : ppn <= physical memory allocator |
---|
[258] | 421 | |
---|
[493] | 422 | unsigned int ppn; // first physical page index (28 bits = |x|y|bppi|sppi|) |
---|
| 423 | unsigned int vpn; // first virtual page index (20 bits = |ix1|ix2|) |
---|
| 424 | unsigned int vpn_max; // last virtual page index (20 bits = |ix1|ix2|) |
---|
[258] | 425 | |
---|
[412] | 426 | vpn = vseg->vbase >> 12; |
---|
| 427 | vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
[258] | 428 | |
---|
[412] | 429 | // compute npages |
---|
| 430 | unsigned int npages; // number of required (big or small) pages |
---|
| 431 | if ( big == 0 ) npages = vpn_max - vpn + 1; // number of small pages |
---|
| 432 | else npages = (vpn_max>>9) - (vpn>>9) + 1; // number of big pages |
---|
| 433 | |
---|
| 434 | // compute ppn |
---|
[732] | 435 | if ( vseg->ident ) // identity mapping : no memory allocation required |
---|
[258] | 436 | { |
---|
[412] | 437 | ppn = vpn; |
---|
[258] | 438 | } |
---|
[412] | 439 | else // not identity mapping |
---|
[258] | 440 | { |
---|
[412] | 441 | if ( is_ram ) // RAM : physical memory allocation required |
---|
[258] | 442 | { |
---|
[412] | 443 | // compute pointer on physical memory allocator in dest cluster |
---|
| 444 | pmem_alloc_t* palloc = &boot_pmem_alloc[x_dest][y_dest]; |
---|
[258] | 445 | |
---|
[732] | 446 | if ( big == 0 ) // allocate contiguous SPPs |
---|
[412] | 447 | { |
---|
| 448 | ppn = _get_small_ppn( palloc, npages ); |
---|
| 449 | } |
---|
[732] | 450 | else // allocate contiguous BPPs |
---|
[412] | 451 | { |
---|
[732] | 452 | ppn = _get_big_ppn( palloc, npages ); |
---|
[412] | 453 | } |
---|
[258] | 454 | } |
---|
[412] | 455 | else // PERI : no memory allocation required |
---|
[258] | 456 | { |
---|
[412] | 457 | ppn = pseg->base >> 12; |
---|
[258] | 458 | } |
---|
| 459 | } |
---|
| 460 | |
---|
[732] | 461 | // update vseg.pbase field and register vseg mapped |
---|
[412] | 462 | vseg->pbase = ((paddr_t)ppn) << 12; |
---|
[493] | 463 | vseg->mapped = 1; |
---|
[258] | 464 | |
---|
[412] | 465 | //////////// Third step : (only if the vseg is a page table) |
---|
| 466 | //////////// - compute the physical & virtual base address for each vspace |
---|
| 467 | //////////// by dividing the vseg in several sub-segments. |
---|
| 468 | //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays, |
---|
[427] | 469 | //////////// and initialize next_pt2 allocators. |
---|
| 470 | //////////// - reset all entries in first level page tables |
---|
[412] | 471 | |
---|
| 472 | if ( is_ptab ) |
---|
[258] | 473 | { |
---|
[412] | 474 | unsigned int vs; // vspace index |
---|
| 475 | unsigned int nspaces; // number of vspaces |
---|
| 476 | unsigned int nsp; // number of small pages for one PTAB |
---|
| 477 | unsigned int offset; // address offset for current PTAB |
---|
[258] | 478 | |
---|
[412] | 479 | nspaces = header->vspaces; |
---|
| 480 | offset = 0; |
---|
[258] | 481 | |
---|
[412] | 482 | // each PTAB must be aligned on a 8 Kbytes boundary |
---|
[427] | 483 | nsp = ( vseg->length >> 12 ) / nspaces; |
---|
[412] | 484 | if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1; |
---|
[258] | 485 | |
---|
[412] | 486 | // compute max_pt2 |
---|
| 487 | _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE; |
---|
[433] | 488 | |
---|
[412] | 489 | for ( vs = 0 ; vs < nspaces ; vs++ ) |
---|
[258] | 490 | { |
---|
[433] | 491 | _ptabs_vaddr [vs][x_dest][y_dest] = (vpn + offset) << 12; |
---|
[412] | 492 | _ptabs_paddr [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12; |
---|
| 493 | _ptabs_next_pt2[vs][x_dest][y_dest] = 0; |
---|
[427] | 494 | offset += nsp; |
---|
[433] | 495 | |
---|
[427] | 496 | // reset all entries in PT1 (8 Kbytes) |
---|
| 497 | _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 ); |
---|
[258] | 498 | } |
---|
| 499 | } |
---|
| 500 | |
---|
[493] | 501 | asm volatile ("sync"); |
---|
| 502 | |
---|
[412] | 503 | #if BOOT_DEBUG_PT |
---|
[493] | 504 | if ( big ) |
---|
| 505 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
| 506 | "vbase = %x / length = %x / BIG / npages = %d / pbase = %l\n", |
---|
| 507 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
| 508 | else |
---|
| 509 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
| 510 | "vbase = %x / length = %x / SMALL / npages = %d / pbase = %l\n", |
---|
| 511 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
[412] | 512 | #endif |
---|
| 513 | |
---|
| 514 | } // end boot_vseg_map() |
---|
| 515 | |
---|
| 516 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 517 | // For the vseg defined by the vseg pointer, this function register PTEs |
---|
[412] | 518 | // in one or several page tables. |
---|
[436] | 519 | // It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF). |
---|
[412] | 520 | // The number of involved PTABs depends on the "local" and "global" attributes: |
---|
| 521 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
[493] | 522 | // - PTEs are replicated in all clusters containing procs for a non local vseg. |
---|
[412] | 523 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
[427] | 524 | void boot_vseg_pte( mapping_vseg_t* vseg, |
---|
| 525 | unsigned int vspace_id ) |
---|
[412] | 526 | { |
---|
| 527 | // compute the "global" vseg attribute and actual vspace index |
---|
| 528 | unsigned int global; |
---|
| 529 | unsigned int vsid; |
---|
| 530 | if ( vspace_id == 0xFFFFFFFF ) |
---|
[258] | 531 | { |
---|
[412] | 532 | global = 1; |
---|
| 533 | vsid = 0; |
---|
[258] | 534 | } |
---|
[412] | 535 | else |
---|
[258] | 536 | { |
---|
[412] | 537 | global = 0; |
---|
| 538 | vsid = vspace_id; |
---|
[258] | 539 | } |
---|
| 540 | |
---|
[412] | 541 | // compute the "local" and "big" attributes |
---|
| 542 | unsigned int local = vseg->local; |
---|
| 543 | unsigned int big = vseg->big; |
---|
[258] | 544 | |
---|
[412] | 545 | // compute vseg flags |
---|
[493] | 546 | // The three flags (Local, Remote and Dirty) are set to 1 |
---|
| 547 | // to avoid hardware update for these flags, because GIET_VM |
---|
| 548 | // does use these flags. |
---|
[412] | 549 | unsigned int flags = 0; |
---|
| 550 | if (vseg->mode & C_MODE_MASK) flags |= PTE_C; |
---|
| 551 | if (vseg->mode & X_MODE_MASK) flags |= PTE_X; |
---|
| 552 | if (vseg->mode & W_MODE_MASK) flags |= PTE_W; |
---|
| 553 | if (vseg->mode & U_MODE_MASK) flags |= PTE_U; |
---|
| 554 | if ( global ) flags |= PTE_G; |
---|
| 555 | flags |= PTE_L; |
---|
| 556 | flags |= PTE_R; |
---|
| 557 | flags |= PTE_D; |
---|
[258] | 558 | |
---|
[412] | 559 | // compute VPN, PPN and number of pages (big or small) |
---|
| 560 | unsigned int vpn = vseg->vbase >> 12; |
---|
| 561 | unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
| 562 | unsigned int ppn = (unsigned int)(vseg->pbase >> 12); |
---|
| 563 | unsigned int npages; |
---|
| 564 | if ( big == 0 ) npages = vpn_max - vpn + 1; |
---|
| 565 | else npages = (vpn_max>>9) - (vpn>>9) + 1; |
---|
| 566 | |
---|
[493] | 567 | // compute destination cluster coordinates, for local vsegs |
---|
| 568 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 569 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 570 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
| 571 | mapping_pseg_t* pseg_dest = &pseg[vseg->psegid]; |
---|
| 572 | mapping_cluster_t* cluster_dest = &cluster[pseg_dest->clusterid]; |
---|
| 573 | unsigned int x_dest = cluster_dest->x; |
---|
| 574 | unsigned int y_dest = cluster_dest->y; |
---|
[412] | 575 | |
---|
[493] | 576 | unsigned int p; // iterator for physical page index |
---|
| 577 | unsigned int x; // iterator for cluster x coordinate |
---|
| 578 | unsigned int y; // iterator for cluster y coordinate |
---|
| 579 | unsigned int v; // iterator for vspace index |
---|
[412] | 580 | |
---|
| 581 | // loop on PTEs |
---|
| 582 | for ( p = 0 ; p < npages ; p++ ) |
---|
| 583 | { |
---|
| 584 | if ( (local != 0) && (global == 0) ) // one cluster / one vspace |
---|
[258] | 585 | { |
---|
[412] | 586 | if ( big ) // big pages => PTE1s |
---|
| 587 | { |
---|
| 588 | boot_add_pte1( vsid, |
---|
| 589 | x_dest, |
---|
| 590 | y_dest, |
---|
| 591 | vpn + (p<<9), |
---|
| 592 | flags, |
---|
[732] | 593 | ppn + (p<<9), |
---|
| 594 | vseg->ident ); |
---|
[412] | 595 | } |
---|
| 596 | else // small pages => PTE2s |
---|
| 597 | { |
---|
| 598 | boot_add_pte2( vsid, |
---|
| 599 | x_dest, |
---|
| 600 | y_dest, |
---|
| 601 | vpn + p, |
---|
| 602 | flags, |
---|
[732] | 603 | ppn + p, |
---|
| 604 | vseg->ident ); |
---|
[412] | 605 | } |
---|
[258] | 606 | } |
---|
[412] | 607 | else if ( (local == 0) && (global == 0) ) // all clusters / one vspace |
---|
[258] | 608 | { |
---|
[412] | 609 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
[258] | 610 | { |
---|
[412] | 611 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
| 612 | { |
---|
[493] | 613 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
[412] | 614 | { |
---|
[493] | 615 | if ( big ) // big pages => PTE1s |
---|
| 616 | { |
---|
| 617 | boot_add_pte1( vsid, |
---|
| 618 | x, |
---|
| 619 | y, |
---|
| 620 | vpn + (p<<9), |
---|
| 621 | flags, |
---|
[732] | 622 | ppn + (p<<9), |
---|
| 623 | vseg->ident ); |
---|
[493] | 624 | } |
---|
| 625 | else // small pages => PTE2s |
---|
| 626 | { |
---|
| 627 | boot_add_pte2( vsid, |
---|
| 628 | x, |
---|
| 629 | y, |
---|
| 630 | vpn + p, |
---|
| 631 | flags, |
---|
[732] | 632 | ppn + p, |
---|
| 633 | vseg->ident ); |
---|
[493] | 634 | } |
---|
[412] | 635 | } |
---|
| 636 | } |
---|
[258] | 637 | } |
---|
[412] | 638 | } |
---|
| 639 | else if ( (local != 0) && (global != 0) ) // one cluster / all vspaces |
---|
| 640 | { |
---|
| 641 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
[258] | 642 | { |
---|
[412] | 643 | if ( big ) // big pages => PTE1s |
---|
| 644 | { |
---|
| 645 | boot_add_pte1( v, |
---|
| 646 | x_dest, |
---|
| 647 | y_dest, |
---|
| 648 | vpn + (p<<9), |
---|
| 649 | flags, |
---|
[732] | 650 | ppn + (p<<9), |
---|
| 651 | vseg->ident ); |
---|
[412] | 652 | } |
---|
| 653 | else // small pages = PTE2s |
---|
| 654 | { |
---|
| 655 | boot_add_pte2( v, |
---|
| 656 | x_dest, |
---|
| 657 | y_dest, |
---|
| 658 | vpn + p, |
---|
| 659 | flags, |
---|
[732] | 660 | ppn + p, |
---|
| 661 | vseg->ident ); |
---|
[412] | 662 | } |
---|
[258] | 663 | } |
---|
[412] | 664 | } |
---|
| 665 | else if ( (local == 0) && (global != 0) ) // all clusters / all vspaces |
---|
| 666 | { |
---|
| 667 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
[258] | 668 | { |
---|
[412] | 669 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
| 670 | { |
---|
[493] | 671 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
[412] | 672 | { |
---|
[493] | 673 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
[412] | 674 | { |
---|
[493] | 675 | if ( big ) // big pages => PTE1s |
---|
| 676 | { |
---|
| 677 | boot_add_pte1( v, |
---|
| 678 | x, |
---|
| 679 | y, |
---|
| 680 | vpn + (p<<9), |
---|
| 681 | flags, |
---|
[732] | 682 | ppn + (p<<9), |
---|
| 683 | vseg->ident ); |
---|
[493] | 684 | } |
---|
| 685 | else // small pages -> PTE2s |
---|
| 686 | { |
---|
| 687 | boot_add_pte2( v, |
---|
| 688 | x, |
---|
| 689 | y, |
---|
| 690 | vpn + p, |
---|
| 691 | flags, |
---|
[732] | 692 | ppn + p, |
---|
| 693 | vseg->ident ); |
---|
[493] | 694 | } |
---|
[412] | 695 | } |
---|
| 696 | } |
---|
| 697 | } |
---|
[258] | 698 | } |
---|
| 699 | } |
---|
[412] | 700 | } // end for pages |
---|
[493] | 701 | |
---|
| 702 | asm volatile ("sync"); |
---|
| 703 | |
---|
[427] | 704 | } // end boot_vseg_pte() |
---|
[258] | 705 | |
---|
[493] | 706 | |
---|
[412] | 707 | /////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 708 | // This function is executed by processor[x][y][0] in each cluster |
---|
| 709 | // containing at least one processor. |
---|
| 710 | // It initialises all page table for all global or private vsegs |
---|
| 711 | // mapped in cluster[x][y], as specified in the mapping. |
---|
[412] | 712 | // In each cluster all page tables for the different vspaces must be |
---|
| 713 | // packed in one vseg occupying one single BPP (Big Physical Page). |
---|
[490] | 714 | // |
---|
[412] | 715 | // For each vseg, the mapping is done in two steps: |
---|
[436] | 716 | // 1) mapping : the boot_vseg_map() function allocates contiguous BPPs |
---|
[412] | 717 | // or SPPs (if the vseg is not associated to a peripheral), and register |
---|
| 718 | // the physical base address in the vseg pbase field. It initialises the |
---|
[493] | 719 | // _ptabs_vaddr[] and _ptabs_paddr[] arrays if the vseg is a PTAB. |
---|
[412] | 720 | // |
---|
[436] | 721 | // 2) page table initialisation : the boot_vseg_pte() function initialise |
---|
[412] | 722 | // the PTEs (both PTE1 and PTE2) in one or several page tables: |
---|
| 723 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
| 724 | // - PTEs are replicated in all clusters for a non local vseg. |
---|
| 725 | // |
---|
| 726 | // We must handle vsegs in the following order |
---|
[493] | 727 | // 1) global vseg containing PTAB mapped in cluster[x][y], |
---|
| 728 | // 2) global vsegs occupying more than one BPP mapped in cluster[x][y], |
---|
| 729 | // 3) others global vsegs mapped in cluster[x][y], |
---|
| 730 | // 4) all private vsegs in all user spaces mapped in cluster[x][y]. |
---|
[412] | 731 | /////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 732 | void boot_ptab_init( unsigned int cx, |
---|
| 733 | unsigned int cy ) |
---|
[258] | 734 | { |
---|
[412] | 735 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 736 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
| 737 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
[490] | 738 | mapping_cluster_t* cluster ; |
---|
| 739 | mapping_pseg_t* pseg ; |
---|
[258] | 740 | |
---|
| 741 | unsigned int vspace_id; |
---|
| 742 | unsigned int vseg_id; |
---|
| 743 | |
---|
[490] | 744 | unsigned int procid = _get_procid(); |
---|
| 745 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
| 746 | |
---|
[493] | 747 | if( lpid ) |
---|
[490] | 748 | { |
---|
[493] | 749 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
| 750 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
[490] | 751 | _exit(); |
---|
| 752 | } |
---|
| 753 | |
---|
[493] | 754 | if ( header->vspaces == 0 ) |
---|
[258] | 755 | { |
---|
[493] | 756 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
| 757 | "mapping %s contains no vspace\n", header->name ); |
---|
[258] | 758 | _exit(); |
---|
| 759 | } |
---|
| 760 | |
---|
[493] | 761 | ///////// Phase 1 : global vseg containing the PTAB (two barriers required) |
---|
[412] | 762 | |
---|
[513] | 763 | // get PTAB global vseg in cluster(cx,cy) |
---|
[493] | 764 | unsigned int found = 0; |
---|
[412] | 765 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
| 766 | { |
---|
[490] | 767 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 768 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[513] | 769 | if ( (vseg[vseg_id].type == VSEG_TYPE_PTAB) && |
---|
[493] | 770 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
[412] | 771 | { |
---|
[493] | 772 | found = 1; |
---|
| 773 | break; |
---|
[412] | 774 | } |
---|
| 775 | } |
---|
[493] | 776 | if ( found == 0 ) |
---|
[258] | 777 | { |
---|
[493] | 778 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
| 779 | "cluster[%d][%d] contains no PTAB vseg\n", cx , cy ); |
---|
| 780 | _exit(); |
---|
[258] | 781 | } |
---|
| 782 | |
---|
[493] | 783 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[490] | 784 | |
---|
[493] | 785 | ////////////////////////////////////////////// |
---|
| 786 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 787 | ////////////////////////////////////////////// |
---|
[412] | 788 | |
---|
[493] | 789 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[412] | 790 | |
---|
[493] | 791 | ////////////////////////////////////////////// |
---|
| 792 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 793 | ////////////////////////////////////////////// |
---|
| 794 | |
---|
| 795 | ///////// Phase 2 : global vsegs occupying more than one BPP |
---|
| 796 | |
---|
[258] | 797 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
| 798 | { |
---|
[490] | 799 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 800 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[513] | 801 | if ( (vseg[vseg_id].length > 0x200000) && |
---|
[490] | 802 | (vseg[vseg_id].mapped == 0) && |
---|
[493] | 803 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
[412] | 804 | { |
---|
[427] | 805 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
| 806 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[412] | 807 | } |
---|
[258] | 808 | } |
---|
| 809 | |
---|
[493] | 810 | ///////// Phase 3 : all others global vsegs |
---|
[347] | 811 | |
---|
[412] | 812 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
[493] | 813 | { |
---|
[490] | 814 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 815 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[493] | 816 | if ( (vseg[vseg_id].mapped == 0) && |
---|
| 817 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
[412] | 818 | { |
---|
[427] | 819 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
| 820 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[412] | 821 | } |
---|
| 822 | } |
---|
| 823 | |
---|
[493] | 824 | ///////// Phase 4 : all private vsegs |
---|
[412] | 825 | |
---|
[258] | 826 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
| 827 | { |
---|
| 828 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
| 829 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
| 830 | vseg_id++) |
---|
| 831 | { |
---|
[490] | 832 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 833 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[493] | 834 | if ( (cluster->x == cx) && (cluster->y == cy) ) |
---|
[490] | 835 | { |
---|
| 836 | boot_vseg_map( &vseg[vseg_id], vspace_id ); |
---|
| 837 | boot_vseg_pte( &vseg[vseg_id], vspace_id ); |
---|
| 838 | } |
---|
[258] | 839 | } |
---|
| 840 | } |
---|
| 841 | |
---|
[493] | 842 | ////////////////////////////////////////////// |
---|
| 843 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 844 | ////////////////////////////////////////////// |
---|
[258] | 845 | |
---|
[493] | 846 | } // end boot_ptab_init() |
---|
[258] | 847 | |
---|
[493] | 848 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 849 | // This function should be executed by P[0][0][0] only. It complete the |
---|
| 850 | // page table initialisation, taking care of all global vsegs that are |
---|
| 851 | // not mapped in a cluster containing a processor, and have not been |
---|
| 852 | // handled by the boot_ptab_init(x,y) function. |
---|
| 853 | // An example of such vsegs are the external peripherals in TSAR_LETI platform. |
---|
| 854 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 855 | void boot_ptab_extend() |
---|
[258] | 856 | { |
---|
| 857 | |
---|
[493] | 858 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 859 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
[258] | 860 | |
---|
[493] | 861 | unsigned int vseg_id; |
---|
| 862 | |
---|
| 863 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
[258] | 864 | { |
---|
[493] | 865 | if ( vseg[vseg_id].mapped == 0 ) |
---|
[258] | 866 | { |
---|
[493] | 867 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
| 868 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[452] | 869 | } |
---|
| 870 | } |
---|
[493] | 871 | } // end boot_ptab_extend() |
---|
[258] | 872 | |
---|
| 873 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 874 | // This function returns in the vbase and length buffers the virtual base |
---|
| 875 | // address and the length of the segment allocated to the schedulers array |
---|
| 876 | // in the cluster defined by the clusterid argument. |
---|
| 877 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 878 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
| 879 | unsigned int* vbase, |
---|
| 880 | unsigned int* length ) |
---|
| 881 | { |
---|
[321] | 882 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
[258] | 883 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
| 884 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
| 885 | |
---|
| 886 | unsigned int vseg_id; |
---|
| 887 | unsigned int found = 0; |
---|
| 888 | |
---|
| 889 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
| 890 | { |
---|
[513] | 891 | if ( (vseg[vseg_id].type == VSEG_TYPE_SCHED) && |
---|
[263] | 892 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
[258] | 893 | { |
---|
| 894 | *vbase = vseg[vseg_id].vbase; |
---|
[513] | 895 | *length = vseg[vseg_id].length; |
---|
[258] | 896 | found = 1; |
---|
| 897 | } |
---|
| 898 | } |
---|
| 899 | if ( found == 0 ) |
---|
| 900 | { |
---|
[263] | 901 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
[513] | 902 | _printf("\n[BOOT ERROR] No vseg of type SCHED in cluster [%d,%d]\n", |
---|
[493] | 903 | cluster[cluster_id].x, cluster[cluster_id].y ); |
---|
[258] | 904 | _exit(); |
---|
| 905 | } |
---|
| 906 | } // end boot_get_sched_vaddr() |
---|
| 907 | |
---|
[527] | 908 | #if BOOT_DEBUG_SCHED |
---|
| 909 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 910 | // This debug function should be executed by only one procesor. |
---|
| 911 | // It loops on all processors in all clusters to display |
---|
| 912 | // the HWI / PTI / WTI interrupt vectors for each processor. |
---|
| 913 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 914 | void boot_sched_irq_display() |
---|
| 915 | { |
---|
| 916 | unsigned int cx; |
---|
| 917 | unsigned int cy; |
---|
| 918 | unsigned int lpid; |
---|
| 919 | unsigned int slot; |
---|
| 920 | unsigned int entry; |
---|
[564] | 921 | unsigned int type; |
---|
| 922 | unsigned int channel; |
---|
[527] | 923 | |
---|
| 924 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 925 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 926 | |
---|
| 927 | static_scheduler_t* psched; |
---|
| 928 | |
---|
| 929 | for ( cx = 0 ; cx < X_SIZE ; cx++ ) |
---|
| 930 | { |
---|
| 931 | for ( cy = 0 ; cy < Y_SIZE ; cy++ ) |
---|
| 932 | { |
---|
| 933 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
| 934 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
| 935 | |
---|
| 936 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 937 | { |
---|
| 938 | psched = _schedulers[cx][cy][lpid]; |
---|
| 939 | |
---|
[564] | 940 | _printf("\n[BOOT] interrupt vectors for proc[%d,%d,%d]\n", |
---|
[527] | 941 | cx , cy , lpid ); |
---|
| 942 | |
---|
| 943 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
| 944 | { |
---|
[564] | 945 | entry = psched->hwi_vector[slot]; |
---|
| 946 | type = entry & 0xFFFF; |
---|
| 947 | channel = entry >> 16; |
---|
| 948 | if ( type != ISR_DEFAULT ) |
---|
| 949 | _printf(" - HWI : index = %d / type = %s / channel = %d\n", |
---|
| 950 | slot , _isr_type_str[type] , channel ); |
---|
[527] | 951 | } |
---|
| 952 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
| 953 | { |
---|
[564] | 954 | entry = psched->wti_vector[slot]; |
---|
| 955 | type = entry & 0xFFFF; |
---|
| 956 | channel = entry >> 16; |
---|
| 957 | if ( type != ISR_DEFAULT ) |
---|
| 958 | _printf(" - WTI : index = %d / type = %s / channel = %d\n", |
---|
| 959 | slot , _isr_type_str[type] , channel ); |
---|
[527] | 960 | } |
---|
| 961 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
| 962 | { |
---|
[564] | 963 | entry = psched->pti_vector[slot]; |
---|
| 964 | type = entry & 0xFFFF; |
---|
| 965 | channel = entry >> 16; |
---|
| 966 | if ( type != ISR_DEFAULT ) |
---|
| 967 | _printf(" - PTI : index = %d / type = %s / channel = %d\n", |
---|
| 968 | slot , _isr_type_str[type] , channel ); |
---|
[527] | 969 | } |
---|
| 970 | } |
---|
| 971 | } |
---|
| 972 | } |
---|
| 973 | } // end boot_sched_irq_display() |
---|
| 974 | #endif |
---|
| 975 | |
---|
| 976 | |
---|
[258] | 977 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 978 | // This function is executed in parallel by all processors P[x][y][0]. |
---|
[709] | 979 | // P[x][y][0] initialises all schedulers in cluster[x][y]. The MMU must be activated. |
---|
[493] | 980 | // It is split in two phases separated by a synchronisation barrier. |
---|
[709] | 981 | // - In Step 1, it initialises the _schedulers[x][y][p] pointers array, the |
---|
| 982 | // idle_thread context, the HWI / PTI / WTI interrupt vectors, |
---|
| 983 | // and the XCU HWI / PTI / WTI masks. |
---|
| 984 | // - In Step 2, it scan all threads in all vspaces to complete the threads contexts, |
---|
[493] | 985 | // initialisation as specified in the mapping_info data structure, |
---|
| 986 | // and set the CP0_SCHED register. |
---|
[258] | 987 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 988 | void boot_scheduler_init( unsigned int x, |
---|
| 989 | unsigned int y ) |
---|
[258] | 990 | { |
---|
[493] | 991 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 992 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 993 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
[513] | 994 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
[709] | 995 | mapping_thread_t* thread = _get_thread_base(header); |
---|
[493] | 996 | mapping_periph_t* periph = _get_periph_base(header); |
---|
| 997 | mapping_irq_t* irq = _get_irq_base(header); |
---|
[258] | 998 | |
---|
[493] | 999 | unsigned int periph_id; |
---|
| 1000 | unsigned int irq_id; |
---|
| 1001 | unsigned int vspace_id; |
---|
[513] | 1002 | unsigned int vseg_id; |
---|
[709] | 1003 | unsigned int thread_id; |
---|
[258] | 1004 | |
---|
[493] | 1005 | unsigned int sched_vbase; // schedulers array vbase address |
---|
| 1006 | unsigned int sched_length; // schedulers array length |
---|
| 1007 | static_scheduler_t* psched; // pointer on processor scheduler |
---|
[321] | 1008 | |
---|
[527] | 1009 | unsigned int cluster_id = (x * Y_SIZE) + y; |
---|
| 1010 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
[493] | 1011 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
| 1012 | unsigned int lpid; |
---|
| 1013 | |
---|
[527] | 1014 | if ( nprocs > 8 ) |
---|
| 1015 | { |
---|
| 1016 | _printf("\n[BOOT ERROR] cluster[%d,%d] contains more than 8 procs\n", x, y ); |
---|
| 1017 | _exit(); |
---|
| 1018 | } |
---|
[258] | 1019 | |
---|
[527] | 1020 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 1021 | // Step 1 : - initialize the schedulers[] array of pointers, |
---|
[709] | 1022 | // - initialize the "threads" and "current variables. |
---|
| 1023 | // - initialise the idle_thread context. |
---|
[527] | 1024 | // - initialize the HWI, PTI and WTI interrupt vectors. |
---|
| 1025 | // - initialize the XCU masks for HWI / WTI / PTI interrupts. |
---|
| 1026 | // |
---|
| 1027 | // The general policy for interrupts routing is the following: |
---|
| 1028 | // - the local HWI are statically allocatedted to local processors. |
---|
| 1029 | // - the nprocs first PTI are allocated for TICK (one per processor). |
---|
| 1030 | // - we allocate 4 WTI per processor: the first one is for WAKUP, |
---|
| 1031 | // the 3 others WTI are used for external interrupts (from PIC), |
---|
| 1032 | // and are dynamically allocated by kernel on demand. |
---|
| 1033 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 1034 | |
---|
[493] | 1035 | // get scheduler array virtual base address in cluster[x,y] |
---|
| 1036 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
[321] | 1037 | |
---|
[493] | 1038 | if ( sched_length < (nprocs<<13) ) // 8 Kbytes per scheduler |
---|
| 1039 | { |
---|
[527] | 1040 | _printf("\n[BOOT ERROR] Sched segment too small in cluster[%d,%d]\n", |
---|
| 1041 | x, y ); |
---|
[493] | 1042 | _exit(); |
---|
| 1043 | } |
---|
[321] | 1044 | |
---|
[493] | 1045 | // loop on local processors |
---|
| 1046 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
[258] | 1047 | { |
---|
[493] | 1048 | // get scheduler pointer and initialise the schedulers pointers array |
---|
| 1049 | psched = (static_scheduler_t*)(sched_vbase + (lpid<<13)); |
---|
| 1050 | _schedulers[x][y][lpid] = psched; |
---|
[258] | 1051 | |
---|
[709] | 1052 | // initialise the "threads" and "current" variables default values |
---|
| 1053 | psched->threads = 0; |
---|
| 1054 | psched->current = IDLE_THREAD_INDEX; |
---|
[258] | 1055 | |
---|
[527] | 1056 | // set default values for HWI / PTI / SWI vectors (valid bit = 0) |
---|
[493] | 1057 | unsigned int slot; |
---|
| 1058 | for (slot = 0; slot < 32; slot++) |
---|
[258] | 1059 | { |
---|
[493] | 1060 | psched->hwi_vector[slot] = 0; |
---|
| 1061 | psched->pti_vector[slot] = 0; |
---|
| 1062 | psched->wti_vector[slot] = 0; |
---|
[258] | 1063 | } |
---|
[493] | 1064 | |
---|
[709] | 1065 | // initializes the idle_thread context: |
---|
| 1066 | // - the SR slot is 0xFF03 because this thread run in kernel mode. |
---|
[493] | 1067 | // - it uses the page table of vspace[0] |
---|
[709] | 1068 | // - it uses the kernel TTY0 terminal |
---|
[493] | 1069 | // - slots containing addresses (SP,RA,EPC) are initialised by kernel_init() |
---|
[709] | 1070 | // - It is always executable (NORUN == 0) |
---|
[493] | 1071 | |
---|
[709] | 1072 | psched->context[IDLE_THREAD_INDEX].slot[CTX_CR_ID] = 0; |
---|
| 1073 | psched->context[IDLE_THREAD_INDEX].slot[CTX_SR_ID] = 0xFF03; |
---|
| 1074 | psched->context[IDLE_THREAD_INDEX].slot[CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13; |
---|
| 1075 | psched->context[IDLE_THREAD_INDEX].slot[CTX_PTAB_ID] = _ptabs_vaddr[0][x][y]; |
---|
| 1076 | psched->context[IDLE_THREAD_INDEX].slot[CTX_TTY_ID] = 0; |
---|
| 1077 | psched->context[IDLE_THREAD_INDEX].slot[CTX_LTID_ID] = IDLE_THREAD_INDEX; |
---|
| 1078 | psched->context[IDLE_THREAD_INDEX].slot[CTX_VSID_ID] = 0; |
---|
| 1079 | psched->context[IDLE_THREAD_INDEX].slot[CTX_NORUN_ID] = 0; |
---|
| 1080 | psched->context[IDLE_THREAD_INDEX].slot[CTX_SIGS_ID] = 0; |
---|
| 1081 | psched->context[IDLE_THREAD_INDEX].slot[CTX_LOCKS_ID] = 0; |
---|
[493] | 1082 | } |
---|
| 1083 | |
---|
[527] | 1084 | // HWI / PTI / WTI masks (up to 8 local processors) |
---|
| 1085 | unsigned int hwi_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
| 1086 | unsigned int pti_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
| 1087 | unsigned int wti_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
| 1088 | |
---|
| 1089 | // scan local peripherals to get and check local XCU |
---|
[493] | 1090 | mapping_periph_t* xcu = NULL; |
---|
[527] | 1091 | unsigned int min = cluster[cluster_id].periph_offset ; |
---|
| 1092 | unsigned int max = min + cluster[cluster_id].periphs ; |
---|
[493] | 1093 | |
---|
[527] | 1094 | for ( periph_id = min ; periph_id < max ; periph_id++ ) |
---|
[493] | 1095 | { |
---|
| 1096 | if( periph[periph_id].type == PERIPH_TYPE_XCU ) |
---|
[258] | 1097 | { |
---|
[493] | 1098 | xcu = &periph[periph_id]; |
---|
[258] | 1099 | |
---|
[527] | 1100 | // check nb_hwi_in |
---|
| 1101 | if ( xcu->arg0 < xcu->irqs ) |
---|
[295] | 1102 | { |
---|
[538] | 1103 | _printf("\n[BOOT ERROR] Not enough HWI inputs for XCU[%d,%d]" |
---|
| 1104 | " : nb_hwi = %d / nb_irqs = %d\n", |
---|
| 1105 | x , y , xcu->arg0 , xcu->irqs ); |
---|
[295] | 1106 | _exit(); |
---|
| 1107 | } |
---|
[527] | 1108 | // check nb_pti_in |
---|
| 1109 | if ( xcu->arg2 < nprocs ) |
---|
| 1110 | { |
---|
| 1111 | _printf("\n[BOOT ERROR] Not enough PTI inputs for XCU[%d,%d]\n", |
---|
| 1112 | x, y ); |
---|
| 1113 | _exit(); |
---|
| 1114 | } |
---|
| 1115 | // check nb_wti_in |
---|
| 1116 | if ( xcu->arg1 < (4 * nprocs) ) |
---|
| 1117 | { |
---|
| 1118 | _printf("\n[BOOT ERROR] Not enough WTI inputs for XCU[%d,%d]\n", |
---|
| 1119 | x, y ); |
---|
| 1120 | _exit(); |
---|
| 1121 | } |
---|
| 1122 | // check nb_irq_out |
---|
[538] | 1123 | if ( xcu->channels < (nprocs * header->irq_per_proc) ) |
---|
[527] | 1124 | { |
---|
| 1125 | _printf("\n[BOOT ERROR] Not enough outputs for XCU[%d,%d]\n", |
---|
| 1126 | x, y ); |
---|
| 1127 | _exit(); |
---|
| 1128 | } |
---|
[493] | 1129 | } |
---|
| 1130 | } |
---|
[263] | 1131 | |
---|
[493] | 1132 | if ( xcu == NULL ) |
---|
| 1133 | { |
---|
| 1134 | _printf("\n[BOOT ERROR] missing XCU in cluster[%d,%d]\n", x , y ); |
---|
| 1135 | _exit(); |
---|
| 1136 | } |
---|
[321] | 1137 | |
---|
[527] | 1138 | // HWI interrupt vector definition |
---|
| 1139 | // scan HWI connected to local XCU |
---|
[493] | 1140 | // for round-robin allocation to local processors |
---|
| 1141 | lpid = 0; |
---|
| 1142 | for ( irq_id = xcu->irq_offset ; |
---|
| 1143 | irq_id < xcu->irq_offset + xcu->irqs ; |
---|
| 1144 | irq_id++ ) |
---|
| 1145 | { |
---|
| 1146 | unsigned int type = irq[irq_id].srctype; |
---|
| 1147 | unsigned int srcid = irq[irq_id].srcid; |
---|
| 1148 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
| 1149 | unsigned int channel = irq[irq_id].channel << 16; |
---|
[321] | 1150 | |
---|
[493] | 1151 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
| 1152 | { |
---|
| 1153 | _printf("\n[BOOT ERROR] Bad IRQ in cluster[%d,%d]\n", x, y ); |
---|
| 1154 | _exit(); |
---|
| 1155 | } |
---|
[295] | 1156 | |
---|
[527] | 1157 | // register entry in HWI interrupt vector |
---|
| 1158 | _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel; |
---|
[295] | 1159 | |
---|
[527] | 1160 | // update XCU HWI mask for P[x,y,lpid] |
---|
| 1161 | hwi_mask[lpid] = hwi_mask[lpid] | (1<<srcid); |
---|
| 1162 | |
---|
[493] | 1163 | lpid = (lpid + 1) % nprocs; |
---|
| 1164 | } // end for irqs |
---|
[412] | 1165 | |
---|
[527] | 1166 | // PTI interrupt vector definition |
---|
| 1167 | // one PTI for TICK per processor |
---|
| 1168 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 1169 | { |
---|
| 1170 | // register entry in PTI interrupt vector |
---|
| 1171 | _schedulers[x][y][lpid]->pti_vector[lpid] = ISR_TICK; |
---|
| 1172 | |
---|
| 1173 | // update XCU PTI mask for P[x,y,lpid] |
---|
| 1174 | pti_mask[lpid] = pti_mask[lpid] | (1<<lpid); |
---|
| 1175 | } |
---|
| 1176 | |
---|
| 1177 | // WTI interrupt vector definition |
---|
| 1178 | // 4 WTI per processor, first for WAKUP |
---|
| 1179 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 1180 | { |
---|
| 1181 | // register WAKUP ISR in WTI interrupt vector |
---|
[552] | 1182 | _schedulers[x][y][lpid]->wti_vector[lpid] = ISR_WAKUP; |
---|
[527] | 1183 | |
---|
| 1184 | // update XCU WTI mask for P[x,y,lpid] (4 entries per proc) |
---|
| 1185 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid )); |
---|
| 1186 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + NB_PROCS_MAX )); |
---|
| 1187 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 2*NB_PROCS_MAX)); |
---|
| 1188 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 3*NB_PROCS_MAX)); |
---|
| 1189 | } |
---|
| 1190 | |
---|
| 1191 | // set the XCU masks for HWI / WTI / PTI interrupts |
---|
| 1192 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 1193 | { |
---|
| 1194 | unsigned int channel = lpid * IRQ_PER_PROCESSOR; |
---|
| 1195 | |
---|
| 1196 | _xcu_set_mask( cluster_xy, channel, hwi_mask[lpid], IRQ_TYPE_HWI ); |
---|
| 1197 | _xcu_set_mask( cluster_xy, channel, wti_mask[lpid], IRQ_TYPE_WTI ); |
---|
| 1198 | _xcu_set_mask( cluster_xy, channel, pti_mask[lpid], IRQ_TYPE_PTI ); |
---|
| 1199 | } |
---|
| 1200 | |
---|
[493] | 1201 | ////////////////////////////////////////////// |
---|
| 1202 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1203 | ////////////////////////////////////////////// |
---|
[412] | 1204 | |
---|
[527] | 1205 | #if BOOT_DEBUG_SCHED |
---|
| 1206 | if ( cluster_xy == 0 ) boot_sched_irq_display(); |
---|
| 1207 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1208 | #endif |
---|
| 1209 | |
---|
| 1210 | /////////////////////////////////////////////////////////////////////////////// |
---|
[709] | 1211 | // Step 2 : Initialise the threads context. The context of a thread placed |
---|
[493] | 1212 | // on processor P must be stored in the scheduler of P. |
---|
[709] | 1213 | // For each vspace, this require two nested loops: loop on the threads, |
---|
| 1214 | // and loop on the local processors in cluster[x,y]. |
---|
| 1215 | // We complete the scheduler when the required placement matches |
---|
| 1216 | // the local processor. |
---|
[527] | 1217 | /////////////////////////////////////////////////////////////////////////////// |
---|
[412] | 1218 | |
---|
[493] | 1219 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
| 1220 | { |
---|
| 1221 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
| 1222 | // and the stack address are defined in virtual space. |
---|
| 1223 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13) ); |
---|
[258] | 1224 | |
---|
[709] | 1225 | // loop on the threads in vspace (thread_id is the global index in mapping) |
---|
| 1226 | for (thread_id = vspace[vspace_id].thread_offset; |
---|
| 1227 | thread_id < (vspace[vspace_id].thread_offset + vspace[vspace_id].threads); |
---|
| 1228 | thread_id++) |
---|
[493] | 1229 | { |
---|
[709] | 1230 | // get the required thread placement coordinates [x,y,p] |
---|
| 1231 | unsigned int req_x = cluster[thread[thread_id].clusterid].x; |
---|
| 1232 | unsigned int req_y = cluster[thread[thread_id].clusterid].y; |
---|
| 1233 | unsigned int req_p = thread[thread_id].proclocid; |
---|
[258] | 1234 | |
---|
[709] | 1235 | // ctx_norun : two conditions to activate a thread |
---|
| 1236 | // - The vspace.active flag is set in the mapping |
---|
| 1237 | // - The thread.is_main flag is set in the mapping |
---|
| 1238 | unsigned int ctx_norun = (unsigned int)(vspace[vspace_id].active == 0) | |
---|
| 1239 | (unsigned int)(thread[thread_id].is_main == 0); |
---|
| 1240 | |
---|
[493] | 1241 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
| 1242 | unsigned int ctx_ptpr = (_ptabs_paddr[vspace_id][req_x][req_y] >> 13); |
---|
[258] | 1243 | |
---|
[493] | 1244 | // ctx_ptab : page_table virtual base address |
---|
| 1245 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][req_x][req_y]; |
---|
[412] | 1246 | |
---|
[646] | 1247 | // ctx_entry : Get the virtual address of the memory location containing |
---|
[709] | 1248 | // the thread entry point : the start_vector is stored by GCC in the |
---|
| 1249 | // seg_data segment, and we must wait the application.elf loading to get |
---|
[527] | 1250 | // the entry point value... |
---|
[513] | 1251 | vseg_id = vspace[vspace_id].start_vseg_id; |
---|
[709] | 1252 | unsigned int ctx_entry = vseg[vseg_id].vbase + (thread[thread_id].startid)*4; |
---|
[258] | 1253 | |
---|
[513] | 1254 | // ctx_sp : Get the vseg containing the stack |
---|
[709] | 1255 | // allocate 16 slots (64 bytes) for possible arguments. |
---|
| 1256 | vseg_id = thread[thread_id].stack_vseg_id; |
---|
| 1257 | unsigned int ctx_sp = vseg[vseg_id].vbase + vseg[vseg_id].length - 64; |
---|
[493] | 1258 | |
---|
| 1259 | // loop on the local processors |
---|
| 1260 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
[258] | 1261 | { |
---|
[493] | 1262 | if ( (x == req_x) && (y == req_y) && (req_p == lpid) ) // fit |
---|
[295] | 1263 | { |
---|
[493] | 1264 | // pointer on selected scheduler |
---|
| 1265 | psched = _schedulers[x][y][lpid]; |
---|
[258] | 1266 | |
---|
[709] | 1267 | // ltid : compute local thread index in scheduler |
---|
| 1268 | unsigned int ltid = psched->threads; |
---|
[258] | 1269 | |
---|
[709] | 1270 | // update the threads field in scheduler: |
---|
| 1271 | psched->threads = ltid + 1; |
---|
[258] | 1272 | |
---|
[726] | 1273 | // ctx_trdid : compute pthread global identifier |
---|
[709] | 1274 | unsigned int ctx_trdid = x << 24 | y<<16 | lpid<<8 | ltid; |
---|
[321] | 1275 | |
---|
[709] | 1276 | // initializes the thread context |
---|
| 1277 | psched->context[ltid].slot[CTX_CR_ID] = 0; |
---|
| 1278 | psched->context[ltid].slot[CTX_SR_ID] = GIET_SR_INIT_VALUE; |
---|
| 1279 | psched->context[ltid].slot[CTX_SP_ID] = ctx_sp; |
---|
| 1280 | psched->context[ltid].slot[CTX_EPC_ID] = ctx_entry; |
---|
| 1281 | psched->context[ltid].slot[CTX_ENTRY_ID] = ctx_entry; |
---|
| 1282 | psched->context[ltid].slot[CTX_PTPR_ID] = ctx_ptpr; |
---|
| 1283 | psched->context[ltid].slot[CTX_PTAB_ID] = ctx_ptab; |
---|
| 1284 | psched->context[ltid].slot[CTX_LTID_ID] = ltid; |
---|
| 1285 | psched->context[ltid].slot[CTX_TRDID_ID] = ctx_trdid; |
---|
| 1286 | psched->context[ltid].slot[CTX_VSID_ID] = vspace_id; |
---|
| 1287 | psched->context[ltid].slot[CTX_NORUN_ID] = ctx_norun; |
---|
| 1288 | psched->context[ltid].slot[CTX_SIGS_ID] = 0; |
---|
| 1289 | psched->context[ltid].slot[CTX_LOCKS_ID] = 0; |
---|
[493] | 1290 | |
---|
[709] | 1291 | psched->context[ltid].slot[CTX_TTY_ID] = 0xFFFFFFFF; |
---|
| 1292 | psched->context[ltid].slot[CTX_CMA_FB_ID] = 0xFFFFFFFF; |
---|
| 1293 | psched->context[ltid].slot[CTX_CMA_RX_ID] = 0xFFFFFFFF; |
---|
| 1294 | psched->context[ltid].slot[CTX_CMA_TX_ID] = 0xFFFFFFFF; |
---|
| 1295 | psched->context[ltid].slot[CTX_NIC_RX_ID] = 0xFFFFFFFF; |
---|
| 1296 | psched->context[ltid].slot[CTX_NIC_TX_ID] = 0xFFFFFFFF; |
---|
| 1297 | psched->context[ltid].slot[CTX_TIM_ID] = 0xFFFFFFFF; |
---|
| 1298 | psched->context[ltid].slot[CTX_HBA_ID] = 0xFFFFFFFF; |
---|
[631] | 1299 | |
---|
[709] | 1300 | // update thread ltid field in the mapping |
---|
| 1301 | thread[thread_id].ltid = ltid; |
---|
| 1302 | |
---|
[493] | 1303 | #if BOOT_DEBUG_SCHED |
---|
[709] | 1304 | _printf("\nThread %s in vspace %s allocated to P[%d,%d,%d]\n" |
---|
[493] | 1305 | " - ctx[LTID] = %d\n" |
---|
[709] | 1306 | " - ctx[TRDID] = %d\n" |
---|
[493] | 1307 | " - ctx[SR] = %x\n" |
---|
| 1308 | " - ctx[SP] = %x\n" |
---|
[646] | 1309 | " - ctx[ENTRY] = %x\n" |
---|
[493] | 1310 | " - ctx[PTPR] = %x\n" |
---|
| 1311 | " - ctx[PTAB] = %x\n" |
---|
| 1312 | " - ctx[VSID] = %d\n" |
---|
[695] | 1313 | " - ctx[NORUN] = %x\n" |
---|
| 1314 | " - ctx[SIG] = %x\n", |
---|
[709] | 1315 | thread[thread_id].name, |
---|
[493] | 1316 | vspace[vspace_id].name, |
---|
| 1317 | x, y, lpid, |
---|
[709] | 1318 | psched->context[ltid].slot[CTX_LTID_ID], |
---|
| 1319 | psched->context[ltid].slot[CTX_TRDID_ID], |
---|
| 1320 | psched->context[ltid].slot[CTX_SR_ID], |
---|
| 1321 | psched->context[ltid].slot[CTX_SP_ID], |
---|
| 1322 | psched->context[ltid].slot[CTX_ENTRY_ID], |
---|
| 1323 | psched->context[ltid].slot[CTX_PTPR_ID], |
---|
| 1324 | psched->context[ltid].slot[CTX_PTAB_ID], |
---|
| 1325 | psched->context[ltid].slot[CTX_VSID_ID], |
---|
| 1326 | psched->context[ltid].slot[CTX_NORUN_ID], |
---|
[732] | 1327 | psched->context[ltid].slot[CTX_SIGS_ID] ); |
---|
[493] | 1328 | #endif |
---|
| 1329 | } // end if FIT |
---|
| 1330 | } // end for loop on local procs |
---|
[709] | 1331 | } // end loop on threads |
---|
[493] | 1332 | } // end loop on vspaces |
---|
| 1333 | } // end boot_scheduler_init() |
---|
| 1334 | |
---|
| 1335 | |
---|
| 1336 | |
---|
[258] | 1337 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1338 | // This function loads the map.bin file from block device. |
---|
| 1339 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1340 | void boot_mapping_init() |
---|
| 1341 | { |
---|
[726] | 1342 | |
---|
| 1343 | #if BOOT_DEBUG_MAPPING |
---|
| 1344 | _printf("\n[BOOT DEBUG] boot_mapin_init() : enter\n"); |
---|
| 1345 | #endif |
---|
| 1346 | |
---|
[590] | 1347 | // load map.bin file into buffer |
---|
| 1348 | if ( _fat_load_no_cache( "map.bin", |
---|
| 1349 | SEG_BOOT_MAPPING_BASE, |
---|
| 1350 | SEG_BOOT_MAPPING_SIZE ) ) |
---|
[258] | 1351 | { |
---|
[493] | 1352 | _printf("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
[258] | 1353 | _exit(); |
---|
| 1354 | } |
---|
| 1355 | |
---|
[477] | 1356 | // check mapping signature, number of clusters, number of vspaces |
---|
| 1357 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1358 | if ( (header->signature != IN_MAPPING_SIGNATURE) || |
---|
| 1359 | (header->x_size != X_SIZE) || |
---|
| 1360 | (header->y_size != Y_SIZE) || |
---|
| 1361 | (header->vspaces > GIET_NB_VSPACE_MAX) ) |
---|
| 1362 | { |
---|
[590] | 1363 | _printf("\n[BOOT ERROR] Illegal mapping : signature = %x\n", header->signature ); |
---|
[524] | 1364 | _exit(); |
---|
| 1365 | } |
---|
[477] | 1366 | |
---|
| 1367 | #if BOOT_DEBUG_MAPPING |
---|
| 1368 | unsigned int line; |
---|
| 1369 | unsigned int* pointer = (unsigned int*)SEG_BOOT_MAPPING_BASE; |
---|
[493] | 1370 | _printf("\n[BOOT] First block of mapping\n"); |
---|
[477] | 1371 | for ( line = 0 ; line < 8 ; line++ ) |
---|
| 1372 | { |
---|
[590] | 1373 | _printf(" | %X | %X | %X | %X | %X | %X | %X | %X |\n", |
---|
[493] | 1374 | *(pointer + 0), |
---|
| 1375 | *(pointer + 1), |
---|
| 1376 | *(pointer + 2), |
---|
| 1377 | *(pointer + 3), |
---|
| 1378 | *(pointer + 4), |
---|
| 1379 | *(pointer + 5), |
---|
| 1380 | *(pointer + 6), |
---|
| 1381 | *(pointer + 7) ); |
---|
| 1382 | |
---|
[477] | 1383 | pointer = pointer + 8; |
---|
| 1384 | } |
---|
| 1385 | #endif |
---|
| 1386 | |
---|
[258] | 1387 | } // end boot_mapping_init() |
---|
| 1388 | |
---|
| 1389 | |
---|
[557] | 1390 | /////////////////////////////////////////////////// |
---|
| 1391 | void boot_dma_copy( unsigned int cluster_xy, |
---|
| 1392 | unsigned long long dst_paddr, |
---|
| 1393 | unsigned long long src_paddr, |
---|
| 1394 | unsigned int size ) |
---|
| 1395 | { |
---|
| 1396 | // size must be multiple of 64 bytes |
---|
| 1397 | if ( size & 0x3F ) size = (size & (~0x3F)) + 0x40; |
---|
| 1398 | |
---|
| 1399 | unsigned int mode = MODE_DMA_NO_IRQ; |
---|
| 1400 | |
---|
| 1401 | unsigned int src = 0; |
---|
| 1402 | unsigned int src_lsb = (unsigned int)src_paddr; |
---|
| 1403 | unsigned int src_msb = (unsigned int)(src_paddr>>32); |
---|
| 1404 | |
---|
| 1405 | unsigned int dst = 1; |
---|
| 1406 | unsigned int dst_lsb = (unsigned int)dst_paddr; |
---|
| 1407 | unsigned int dst_msb = (unsigned int)(dst_paddr>>32); |
---|
| 1408 | |
---|
| 1409 | // initializes src channel |
---|
| 1410 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_MODE , mode ); |
---|
| 1411 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_SIZE , size ); |
---|
| 1412 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_LSB , src_lsb ); |
---|
| 1413 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_MSB , src_msb ); |
---|
| 1414 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING , 1 ); |
---|
| 1415 | |
---|
| 1416 | // initializes dst channel |
---|
| 1417 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_MODE , mode ); |
---|
| 1418 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_SIZE , size ); |
---|
| 1419 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_LSB , dst_lsb ); |
---|
| 1420 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_MSB , dst_msb ); |
---|
| 1421 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING , 1 ); |
---|
| 1422 | |
---|
| 1423 | // start CPY coprocessor (write non-zero value into config register) |
---|
| 1424 | _mwr_set_coproc_register( cluster_xy, 0 , 1 ); |
---|
| 1425 | |
---|
| 1426 | // poll dst channel status register to detect completion |
---|
| 1427 | unsigned int status; |
---|
| 1428 | do |
---|
| 1429 | { |
---|
| 1430 | status = _mwr_get_channel_register( cluster_xy , dst , MWR_CHANNEL_STATUS ); |
---|
| 1431 | } while ( status == MWR_CHANNEL_BUSY ); |
---|
| 1432 | |
---|
| 1433 | if ( status ) |
---|
| 1434 | { |
---|
| 1435 | _printf("\n[BOOT ERROR] in boot_dma_copy()\n"); |
---|
| 1436 | _exit(); |
---|
| 1437 | } |
---|
| 1438 | |
---|
| 1439 | // stop CPY coprocessor and DMA channels |
---|
| 1440 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING , 0 ); |
---|
| 1441 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING , 0 ); |
---|
| 1442 | _mwr_set_coproc_register ( cluster_xy , 0 , 0 ); |
---|
| 1443 | |
---|
| 1444 | } // end boot_dma_copy() |
---|
| 1445 | |
---|
[527] | 1446 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1447 | // This function load all loadable segments contained in the .elf file identified |
---|
[347] | 1448 | // by the "pathname" argument. Some loadable segments can be copied in several |
---|
| 1449 | // clusters: same virtual address but different physical addresses. |
---|
| 1450 | // - It open the file. |
---|
[527] | 1451 | // - It loads the complete file in the dedicated _boot_elf_buffer. |
---|
[359] | 1452 | // - It copies each loadable segments at the virtual address defined in |
---|
| 1453 | // the .elf file, making several copies if the target vseg is not local. |
---|
[347] | 1454 | // - It closes the file. |
---|
[527] | 1455 | // This function is supposed to be executed by all processors[x,y,0]. |
---|
| 1456 | // |
---|
| 1457 | // Note: We must use physical addresses to reach the destination buffers that |
---|
| 1458 | // can be located in remote clusters. We use either a _physical_memcpy(), |
---|
| 1459 | // or a _dma_physical_copy() if DMA is available. |
---|
| 1460 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[347] | 1461 | void load_one_elf_file( unsigned int is_kernel, // kernel file if non zero |
---|
[258] | 1462 | char* pathname, |
---|
[347] | 1463 | unsigned int vspace_id ) // to scan the proper vspace |
---|
[258] | 1464 | { |
---|
[347] | 1465 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1466 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
| 1467 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
| 1468 | |
---|
[527] | 1469 | unsigned int procid = _get_procid(); |
---|
| 1470 | unsigned int cxy = procid >> P_WIDTH; |
---|
| 1471 | unsigned int x = cxy >> Y_WIDTH; |
---|
| 1472 | unsigned int y = cxy & ((1<<Y_WIDTH)-1); |
---|
| 1473 | unsigned int p = procid & ((1<<P_WIDTH)-1); |
---|
[258] | 1474 | |
---|
| 1475 | #if BOOT_DEBUG_ELF |
---|
[557] | 1476 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] enters for %s\n", |
---|
[527] | 1477 | x , y , p , pathname ); |
---|
[258] | 1478 | #endif |
---|
| 1479 | |
---|
[527] | 1480 | Elf32_Ehdr* elf_header_ptr = NULL; // avoid a warning |
---|
[258] | 1481 | |
---|
[590] | 1482 | // only P[0,0,0] load file |
---|
[527] | 1483 | if ( (cxy == 0) && (p == 0) ) |
---|
[258] | 1484 | { |
---|
[590] | 1485 | if ( _fat_load_no_cache( pathname, |
---|
| 1486 | (unsigned int)_boot_elf_buffer, |
---|
| 1487 | GIET_ELF_BUFFER_SIZE ) ) |
---|
[527] | 1488 | { |
---|
[590] | 1489 | _printf("\n[BOOT ERROR] in load_one_elf_file() : %s\n", pathname ); |
---|
[527] | 1490 | _exit(); |
---|
| 1491 | } |
---|
[258] | 1492 | |
---|
[527] | 1493 | // Check ELF Magic Number in ELF header |
---|
| 1494 | Elf32_Ehdr* ptr = (Elf32_Ehdr*)_boot_elf_buffer; |
---|
| 1495 | |
---|
| 1496 | if ( (ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
| 1497 | (ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
| 1498 | (ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
| 1499 | (ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
| 1500 | { |
---|
[557] | 1501 | _printf("\n[BOOT ERROR] load_one_elf_file() : %s not ELF format\n", |
---|
[527] | 1502 | pathname ); |
---|
| 1503 | _exit(); |
---|
| 1504 | } |
---|
| 1505 | |
---|
| 1506 | #if BOOT_DEBUG_ELF |
---|
[557] | 1507 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] load %s at cycle %d\n", |
---|
| 1508 | x , y , p , pathname , _get_proctime() ); |
---|
[527] | 1509 | #endif |
---|
| 1510 | |
---|
| 1511 | } // end if P[0,0,0] |
---|
| 1512 | |
---|
| 1513 | ////////////////////////////////////////////// |
---|
| 1514 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1515 | ////////////////////////////////////////////// |
---|
| 1516 | |
---|
| 1517 | // Each processor P[x,y,0] copy replicated segments in cluster[x,y] |
---|
| 1518 | elf_header_ptr = (Elf32_Ehdr*)_boot_elf_buffer; |
---|
| 1519 | |
---|
[258] | 1520 | // get program header table pointer |
---|
[527] | 1521 | unsigned int offset = elf_header_ptr->e_phoff; |
---|
| 1522 | if( offset == 0 ) |
---|
[258] | 1523 | { |
---|
[493] | 1524 | _printf("\n[BOOT ERROR] load_one_elf_file() : file %s " |
---|
| 1525 | "does not contain loadable segment\n", pathname ); |
---|
[258] | 1526 | _exit(); |
---|
| 1527 | } |
---|
| 1528 | |
---|
[527] | 1529 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(_boot_elf_buffer + offset); |
---|
| 1530 | |
---|
[258] | 1531 | // get number of segments |
---|
| 1532 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
| 1533 | |
---|
[527] | 1534 | // First loop on loadable segments in the .elf file |
---|
| 1535 | unsigned int seg_id; |
---|
[258] | 1536 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
| 1537 | { |
---|
| 1538 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
| 1539 | { |
---|
| 1540 | // Get segment attributes |
---|
| 1541 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
| 1542 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
| 1543 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
| 1544 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
| 1545 | |
---|
[527] | 1546 | if( seg_memsz != seg_filesz ) |
---|
[258] | 1547 | { |
---|
[527] | 1548 | _printf("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = %x\n" |
---|
| 1549 | " in file %s has memsize = %x / filesize = %x \n" |
---|
| 1550 | " check that all global variables are in data segment\n", |
---|
| 1551 | seg_vaddr, pathname , seg_memsz , seg_filesz ); |
---|
[709] | 1552 | _exit(); |
---|
[258] | 1553 | } |
---|
| 1554 | |
---|
[527] | 1555 | unsigned int src_vaddr = (unsigned int)_boot_elf_buffer + seg_offset; |
---|
[258] | 1556 | |
---|
[347] | 1557 | // search all vsegs matching the virtual address |
---|
| 1558 | unsigned int vseg_first; |
---|
| 1559 | unsigned int vseg_last; |
---|
| 1560 | unsigned int vseg_id; |
---|
| 1561 | unsigned int found = 0; |
---|
| 1562 | if ( is_kernel ) |
---|
| 1563 | { |
---|
| 1564 | vseg_first = 0; |
---|
| 1565 | vseg_last = header->globals; |
---|
| 1566 | } |
---|
| 1567 | else |
---|
| 1568 | { |
---|
| 1569 | vseg_first = vspace[vspace_id].vseg_offset; |
---|
| 1570 | vseg_last = vseg_first + vspace[vspace_id].vsegs; |
---|
| 1571 | } |
---|
| 1572 | |
---|
[527] | 1573 | // Second loop on vsegs in the mapping |
---|
[347] | 1574 | for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ ) |
---|
| 1575 | { |
---|
| 1576 | if ( seg_vaddr == vseg[vseg_id].vbase ) // matching |
---|
| 1577 | { |
---|
| 1578 | found = 1; |
---|
| 1579 | |
---|
[527] | 1580 | // get destination buffer physical address, size, coordinates |
---|
[347] | 1581 | paddr_t seg_paddr = vseg[vseg_id].pbase; |
---|
[513] | 1582 | unsigned int seg_size = vseg[vseg_id].length; |
---|
[557] | 1583 | unsigned int cluster_xy = (unsigned int)(seg_paddr>>32); |
---|
| 1584 | unsigned int cx = cluster_xy >> Y_WIDTH; |
---|
| 1585 | unsigned int cy = cluster_xy & ((1<<Y_WIDTH)-1); |
---|
[527] | 1586 | |
---|
[347] | 1587 | // check vseg size |
---|
| 1588 | if ( seg_size < seg_filesz ) |
---|
| 1589 | { |
---|
[493] | 1590 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg %s " |
---|
[590] | 1591 | "is too small for segment %x\n" |
---|
| 1592 | " file = %s / vseg_size = %x / seg_file_size = %x\n", |
---|
| 1593 | vseg[vseg_id].name , seg_vaddr , pathname, |
---|
| 1594 | seg_size , seg_filesz ); |
---|
[347] | 1595 | _exit(); |
---|
| 1596 | } |
---|
[258] | 1597 | |
---|
[527] | 1598 | // P[x,y,0] copy the segment from boot buffer in cluster[0,0] |
---|
[557] | 1599 | // to destination buffer in cluster[x,y], using DMA if available |
---|
[527] | 1600 | if ( (cx == x) && (cy == y) ) |
---|
[347] | 1601 | { |
---|
[557] | 1602 | if( USE_MWR_CPY ) |
---|
[527] | 1603 | { |
---|
[557] | 1604 | boot_dma_copy( cluster_xy, // DMA in cluster[x,y] |
---|
| 1605 | seg_paddr, |
---|
| 1606 | (paddr_t)src_vaddr, |
---|
| 1607 | seg_filesz ); |
---|
| 1608 | #if BOOT_DEBUG_ELF |
---|
| 1609 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : DMA[%d,%d] copy segment %d :\n" |
---|
| 1610 | " vaddr = %x / size = %x / paddr = %l\n", |
---|
| 1611 | x , y , seg_id , seg_vaddr , seg_memsz , seg_paddr ); |
---|
| 1612 | #endif |
---|
[527] | 1613 | } |
---|
| 1614 | else |
---|
| 1615 | { |
---|
| 1616 | _physical_memcpy( seg_paddr, // dest paddr |
---|
| 1617 | (paddr_t)src_vaddr, // source paddr |
---|
| 1618 | seg_filesz ); // size |
---|
| 1619 | #if BOOT_DEBUG_ELF |
---|
[557] | 1620 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] copy segment %d :\n" |
---|
[527] | 1621 | " vaddr = %x / size = %x / paddr = %l\n", |
---|
| 1622 | x , y , p , seg_id , seg_vaddr , seg_memsz , seg_paddr ); |
---|
| 1623 | #endif |
---|
[557] | 1624 | } |
---|
[347] | 1625 | } |
---|
| 1626 | } |
---|
[527] | 1627 | } // end for vsegs |
---|
[347] | 1628 | |
---|
| 1629 | // check at least one matching vseg |
---|
| 1630 | if ( found == 0 ) |
---|
[258] | 1631 | { |
---|
[493] | 1632 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg for loadable " |
---|
| 1633 | "segment %x in file %s not found " |
---|
| 1634 | "check consistency between the .py and .ld files\n", |
---|
| 1635 | seg_vaddr, pathname ); |
---|
[347] | 1636 | _exit(); |
---|
[258] | 1637 | } |
---|
| 1638 | } |
---|
[347] | 1639 | } // end for loadable segments |
---|
[258] | 1640 | |
---|
[527] | 1641 | ////////////////////////////////////////////// |
---|
| 1642 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1643 | ////////////////////////////////////////////// |
---|
[258] | 1644 | |
---|
[590] | 1645 | // only P[0,0,0] signals completion |
---|
[527] | 1646 | if ( (cxy == 0) && (p == 0) ) |
---|
| 1647 | { |
---|
| 1648 | _printf("\n[BOOT] File %s loaded at cycle %d\n", |
---|
| 1649 | pathname , _get_proctime() ); |
---|
| 1650 | } |
---|
| 1651 | |
---|
[258] | 1652 | } // end load_one_elf_file() |
---|
| 1653 | |
---|
| 1654 | |
---|
[347] | 1655 | /////i//////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 1656 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
[347] | 1657 | // as well as the various "application.elf" files into memory. |
---|
| 1658 | // - The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
| 1659 | // - The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
[513] | 1660 | // This function scans all vsegs defined in the map.bin data structure to collect |
---|
[347] | 1661 | // all .elf files pathnames, and calls the load_one_elf_file() for each .elf file. |
---|
| 1662 | // As the code can be replicated in several vsegs, the same code can be copied |
---|
| 1663 | // in one or several clusters by the load_one_elf_file() function. |
---|
| 1664 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 1665 | void boot_elf_load() |
---|
| 1666 | { |
---|
[321] | 1667 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
[258] | 1668 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
[513] | 1669 | mapping_vseg_t* vseg = _get_vseg_base( header ); |
---|
| 1670 | |
---|
[258] | 1671 | unsigned int vspace_id; |
---|
[513] | 1672 | unsigned int vseg_id; |
---|
[258] | 1673 | unsigned int found; |
---|
| 1674 | |
---|
[513] | 1675 | // Scan all global vsegs to find the pathname to the kernel.elf file |
---|
[258] | 1676 | found = 0; |
---|
[513] | 1677 | for( vseg_id = 0 ; vseg_id < header->globals ; vseg_id++ ) |
---|
[258] | 1678 | { |
---|
[513] | 1679 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
[258] | 1680 | { |
---|
| 1681 | found = 1; |
---|
| 1682 | break; |
---|
| 1683 | } |
---|
| 1684 | } |
---|
| 1685 | |
---|
| 1686 | // We need one kernel.elf file |
---|
| 1687 | if (found == 0) |
---|
| 1688 | { |
---|
[493] | 1689 | _printf("\n[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
[258] | 1690 | _exit(); |
---|
| 1691 | } |
---|
| 1692 | |
---|
[347] | 1693 | // Load the kernel |
---|
| 1694 | load_one_elf_file( 1, // kernel file |
---|
[513] | 1695 | vseg[vseg_id].binpath, // file pathname |
---|
[258] | 1696 | 0 ); // vspace 0 |
---|
| 1697 | |
---|
[513] | 1698 | // loop on the vspaces, scanning all vsegs in the vspace, |
---|
[258] | 1699 | // to find the pathname of the .elf file associated to the vspace. |
---|
| 1700 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
| 1701 | { |
---|
[513] | 1702 | // loop on the private vsegs |
---|
[258] | 1703 | unsigned int found = 0; |
---|
[513] | 1704 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
| 1705 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
| 1706 | vseg_id++) |
---|
[258] | 1707 | { |
---|
[513] | 1708 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
[258] | 1709 | { |
---|
| 1710 | found = 1; |
---|
| 1711 | break; |
---|
| 1712 | } |
---|
| 1713 | } |
---|
| 1714 | |
---|
| 1715 | // We want one .elf file per vspace |
---|
| 1716 | if (found == 0) |
---|
| 1717 | { |
---|
[493] | 1718 | _printf("\n[BOOT ERROR] boot_elf_load() : " |
---|
| 1719 | ".elf file not found for vspace %s\n", vspace[vspace_id].name ); |
---|
[258] | 1720 | _exit(); |
---|
| 1721 | } |
---|
| 1722 | |
---|
[347] | 1723 | load_one_elf_file( 0, // not a kernel file |
---|
[513] | 1724 | vseg[vseg_id].binpath, // file pathname |
---|
[347] | 1725 | vspace_id ); // vspace index |
---|
[258] | 1726 | |
---|
| 1727 | } // end for vspaces |
---|
| 1728 | |
---|
| 1729 | } // end boot_elf_load() |
---|
| 1730 | |
---|
| 1731 | |
---|
[527] | 1732 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 1733 | // This function is executed in parallel by all processors[x][y][0]. |
---|
[527] | 1734 | // It initialises the physical memory allocator in each cluster containing |
---|
| 1735 | // a RAM pseg. |
---|
| 1736 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 1737 | void boot_pmem_init( unsigned int cx, |
---|
| 1738 | unsigned int cy ) |
---|
[412] | 1739 | { |
---|
| 1740 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1741 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 1742 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
| 1743 | |
---|
| 1744 | unsigned int pseg_id; |
---|
[490] | 1745 | unsigned int procid = _get_procid(); |
---|
| 1746 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
[493] | 1747 | |
---|
| 1748 | if( lpid ) |
---|
[490] | 1749 | { |
---|
[493] | 1750 | _printf("\n[BOOT ERROR] boot_pmem_init() : " |
---|
| 1751 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
[490] | 1752 | _exit(); |
---|
[493] | 1753 | } |
---|
[412] | 1754 | |
---|
[493] | 1755 | // scan the psegs in local cluster to find pseg of type RAM |
---|
| 1756 | unsigned int found = 0; |
---|
| 1757 | unsigned int cluster_id = cx * Y_SIZE + cy; |
---|
| 1758 | unsigned int pseg_min = cluster[cluster_id].pseg_offset; |
---|
| 1759 | unsigned int pseg_max = pseg_min + cluster[cluster_id].psegs; |
---|
[490] | 1760 | for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ ) |
---|
[412] | 1761 | { |
---|
[490] | 1762 | if ( pseg[pseg_id].type == PSEG_TYPE_RAM ) |
---|
[412] | 1763 | { |
---|
[490] | 1764 | unsigned int base = (unsigned int)pseg[pseg_id].base; |
---|
| 1765 | unsigned int size = (unsigned int)pseg[pseg_id].length; |
---|
[493] | 1766 | _pmem_alloc_init( cx, cy, base, size ); |
---|
| 1767 | found = 1; |
---|
[412] | 1768 | |
---|
| 1769 | #if BOOT_DEBUG_PT |
---|
[493] | 1770 | _printf("\n[BOOT] pmem allocator initialised in cluster[%d][%d]" |
---|
| 1771 | " : base = %x / size = %x\n", cx , cy , base , size ); |
---|
[412] | 1772 | #endif |
---|
[490] | 1773 | break; |
---|
[412] | 1774 | } |
---|
| 1775 | } |
---|
[493] | 1776 | |
---|
| 1777 | if ( found == 0 ) |
---|
| 1778 | { |
---|
| 1779 | _printf("\n[BOOT ERROR] boot_pmem_init() : no RAM in cluster[%d][%d]\n", |
---|
[527] | 1780 | cx , cy ); |
---|
[493] | 1781 | _exit(); |
---|
| 1782 | } |
---|
[412] | 1783 | } // end boot_pmem_init() |
---|
| 1784 | |
---|
| 1785 | ///////////////////////////////////////////////////////////////////////// |
---|
[258] | 1786 | // This function is the entry point of the boot code for all processors. |
---|
| 1787 | ///////////////////////////////////////////////////////////////////////// |
---|
[347] | 1788 | void boot_init() |
---|
[258] | 1789 | { |
---|
[493] | 1790 | |
---|
[295] | 1791 | unsigned int gpid = _get_procid(); |
---|
[493] | 1792 | unsigned int cx = gpid >> (Y_WIDTH + P_WIDTH); |
---|
| 1793 | unsigned int cy = (gpid >> P_WIDTH) & ((1<<Y_WIDTH)-1); |
---|
| 1794 | unsigned int lpid = gpid & ((1 << P_WIDTH) -1); |
---|
[490] | 1795 | |
---|
[527] | 1796 | ////////////////////////////////////////////////////////// |
---|
[493] | 1797 | // Phase ONE : only P[0][0][0] execute it |
---|
[527] | 1798 | ////////////////////////////////////////////////////////// |
---|
[493] | 1799 | if ( gpid == 0 ) |
---|
[258] | 1800 | { |
---|
[552] | 1801 | unsigned int cid; // index for loop on clusters |
---|
[258] | 1802 | |
---|
[493] | 1803 | // initialises the TTY0 spin lock |
---|
| 1804 | _spin_lock_init( &_tty0_spin_lock ); |
---|
| 1805 | |
---|
| 1806 | _printf("\n[BOOT] P[0,0,0] starts at cycle %d\n", _get_proctime() ); |
---|
| 1807 | |
---|
[631] | 1808 | // initialise the MMC locks array |
---|
| 1809 | _mmc_boot_mode = 1; |
---|
| 1810 | _mmc_init_locks(); |
---|
| 1811 | |
---|
[552] | 1812 | // initialises the IOC peripheral |
---|
| 1813 | if ( USE_IOC_BDV != 0 ) _bdv_init(); |
---|
| 1814 | else if ( USE_IOC_HBA != 0 ) _hba_init(); |
---|
| 1815 | else if ( USE_IOC_SDC != 0 ) _sdc_init(); |
---|
| 1816 | else if ( USE_IOC_RDK == 0 ) |
---|
| 1817 | { |
---|
| 1818 | _printf("\n[BOOT ERROR] boot_init() : no IOC peripheral\n"); |
---|
| 1819 | _exit(); |
---|
| 1820 | } |
---|
| 1821 | |
---|
[460] | 1822 | // initialises the FAT |
---|
[590] | 1823 | _fat_init( 0 ); // don't use Inode-Tree, Fat-Cache, etc. |
---|
[460] | 1824 | |
---|
[493] | 1825 | _printf("\n[BOOT] FAT initialised at cycle %d\n", _get_proctime() ); |
---|
| 1826 | |
---|
| 1827 | // Load the map.bin file into memory |
---|
[258] | 1828 | boot_mapping_init(); |
---|
| 1829 | |
---|
[524] | 1830 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1831 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 1832 | |
---|
[493] | 1833 | _printf("\n[BOOT] Mapping %s loaded at cycle %d\n", |
---|
| 1834 | header->name , _get_proctime() ); |
---|
[258] | 1835 | |
---|
[493] | 1836 | // initialises the barrier for all clusters containing processors |
---|
| 1837 | unsigned int nclusters = 0; |
---|
| 1838 | for ( cid = 0 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
| 1839 | { |
---|
| 1840 | if ( cluster[cid].procs ) nclusters++ ; |
---|
| 1841 | } |
---|
[490] | 1842 | |
---|
[493] | 1843 | _simple_barrier_init( &_barrier_all_clusters , nclusters ); |
---|
| 1844 | |
---|
| 1845 | // wake up all processors P[x][y][0] |
---|
| 1846 | for ( cid = 1 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
[490] | 1847 | { |
---|
[493] | 1848 | unsigned int x = cluster[cid].x; |
---|
| 1849 | unsigned int y = cluster[cid].y; |
---|
| 1850 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
[490] | 1851 | |
---|
[493] | 1852 | if ( cluster[cid].procs ) |
---|
| 1853 | { |
---|
| 1854 | unsigned long long paddr = (((unsigned long long)cluster_xy)<<32) + |
---|
[527] | 1855 | SEG_XCU_BASE+XCU_REG( XCU_WTI_REG , 0 ); |
---|
[493] | 1856 | |
---|
| 1857 | _physical_write( paddr , (unsigned int)boot_entry ); |
---|
| 1858 | } |
---|
[490] | 1859 | } |
---|
[412] | 1860 | |
---|
[527] | 1861 | _printf("\n[BOOT] Processors P[x,y,0] start at cycle %d\n", |
---|
| 1862 | _get_proctime() ); |
---|
[490] | 1863 | } |
---|
[412] | 1864 | |
---|
[527] | 1865 | ///////////////////////////////////////////////////////////////// |
---|
[493] | 1866 | // Phase TWO : All processors P[x][y][0] execute it in parallel |
---|
[527] | 1867 | ///////////////////////////////////////////////////////////////// |
---|
[493] | 1868 | if( lpid == 0 ) |
---|
[490] | 1869 | { |
---|
[493] | 1870 | // Initializes physical memory allocator in cluster[cx][cy] |
---|
| 1871 | boot_pmem_init( cx , cy ); |
---|
[412] | 1872 | |
---|
[493] | 1873 | // Build page table in cluster[cx][cy] |
---|
| 1874 | boot_ptab_init( cx , cy ); |
---|
[258] | 1875 | |
---|
[493] | 1876 | ////////////////////////////////////////////// |
---|
| 1877 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1878 | ////////////////////////////////////////////// |
---|
[258] | 1879 | |
---|
[493] | 1880 | // P[0][0][0] complete page tables with vsegs |
---|
| 1881 | // mapped in clusters without processors |
---|
| 1882 | if ( gpid == 0 ) |
---|
| 1883 | { |
---|
| 1884 | // complete page tables initialisation |
---|
| 1885 | boot_ptab_extend(); |
---|
[258] | 1886 | |
---|
[732] | 1887 | _printf("\n[BOOT] Page tables" |
---|
[493] | 1888 | " initialized at cycle %d\n", _get_proctime() ); |
---|
| 1889 | } |
---|
[258] | 1890 | |
---|
[493] | 1891 | ////////////////////////////////////////////// |
---|
| 1892 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1893 | ////////////////////////////////////////////// |
---|
| 1894 | |
---|
| 1895 | // All processors P[x,y,0] activate MMU (using local PTAB) |
---|
| 1896 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
| 1897 | _set_mmu_mode( 0xF ); |
---|
[258] | 1898 | |
---|
[493] | 1899 | // Each processor P[x,y,0] initialises all schedulers in cluster[x,y] |
---|
| 1900 | boot_scheduler_init( cx , cy ); |
---|
[258] | 1901 | |
---|
[493] | 1902 | // Each processor P[x][y][0] initialises its CP0_SCHED register |
---|
| 1903 | _set_sched( (unsigned int)_schedulers[cx][cy][0] ); |
---|
[258] | 1904 | |
---|
[493] | 1905 | ////////////////////////////////////////////// |
---|
| 1906 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1907 | ////////////////////////////////////////////// |
---|
[527] | 1908 | |
---|
[493] | 1909 | if ( gpid == 0 ) |
---|
| 1910 | { |
---|
[527] | 1911 | _printf("\n[BOOT] Schedulers initialised at cycle %d\n", |
---|
| 1912 | _get_proctime() ); |
---|
| 1913 | } |
---|
[258] | 1914 | |
---|
[552] | 1915 | // All processor P[x,y,0] contributes to load .elf files into clusters. |
---|
[527] | 1916 | boot_elf_load(); |
---|
[258] | 1917 | |
---|
[527] | 1918 | ////////////////////////////////////////////// |
---|
| 1919 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1920 | ////////////////////////////////////////////// |
---|
| 1921 | |
---|
[552] | 1922 | // Each processor P[x][y][0] wake up other processors in same cluster |
---|
[524] | 1923 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1924 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 1925 | unsigned int cluster_xy = (cx << Y_WIDTH) + cy; |
---|
| 1926 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
[493] | 1927 | unsigned int p; |
---|
| 1928 | for ( p = 1 ; p < cluster[cluster_id].procs ; p++ ) |
---|
| 1929 | { |
---|
| 1930 | _xcu_send_wti( cluster_xy , p , (unsigned int)boot_entry ); |
---|
| 1931 | } |
---|
[258] | 1932 | |
---|
[527] | 1933 | // only P[0][0][0] makes display |
---|
| 1934 | if ( gpid == 0 ) |
---|
| 1935 | { |
---|
| 1936 | _printf("\n[BOOT] All processors start at cycle %d\n", |
---|
| 1937 | _get_proctime() ); |
---|
| 1938 | } |
---|
[493] | 1939 | } |
---|
[552] | 1940 | // All other processors activate MMU (using local PTAB) |
---|
[493] | 1941 | if ( lpid != 0 ) |
---|
[258] | 1942 | { |
---|
[493] | 1943 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
[258] | 1944 | _set_mmu_mode( 0xF ); |
---|
| 1945 | } |
---|
| 1946 | |
---|
[493] | 1947 | // All processors set CP0_SCHED register |
---|
| 1948 | _set_sched( (unsigned int)_schedulers[cx][cy][lpid] ); |
---|
| 1949 | |
---|
| 1950 | // All processors reset BEV bit in SR to use GIET_VM exception handler |
---|
[427] | 1951 | _set_sr( 0 ); |
---|
| 1952 | |
---|
[646] | 1953 | // Each processor get kernel entry virtual address |
---|
[527] | 1954 | unsigned int kernel_entry = (unsigned int)&kernel_init_vbase; |
---|
| 1955 | |
---|
| 1956 | #if BOOT_DEBUG_ELF |
---|
[552] | 1957 | _printf("\n[DEBUG BOOT_ELF] P[%d,%d,%d] exit boot & jump to %x at cycle %d\n", |
---|
[527] | 1958 | cx, cy, lpid, kernel_entry , _get_proctime() ); |
---|
| 1959 | #endif |
---|
| 1960 | |
---|
[493] | 1961 | // All processors jump to kernel_init |
---|
[258] | 1962 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
| 1963 | |
---|
| 1964 | } // end boot_init() |
---|
| 1965 | |
---|
| 1966 | |
---|
| 1967 | // Local Variables: |
---|
| 1968 | // tab-width: 4 |
---|
| 1969 | // c-basic-offset: 4 |
---|
| 1970 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
| 1971 | // indent-tabs-mode: nil |
---|
| 1972 | // End: |
---|
| 1973 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
| 1974 | |
---|