[816] | 1 | #include "../math.h" |
---|
| 2 | #include "math_private.h" |
---|
[581] | 3 | |
---|
[816] | 4 | static const double one = 1.0, tiny = 1.0e-300; |
---|
| 5 | |
---|
| 6 | /* this function was taken from the uCLibc library |
---|
| 7 | * Return correctly rounded sqrt. |
---|
| 8 | * Method: |
---|
| 9 | * Bit by bit method using integer arithmetic. (Slow, but portable) |
---|
| 10 | * 1. Normalization |
---|
| 11 | * Scale x to y in [1,4) with even powers of 2: |
---|
| 12 | * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then |
---|
| 13 | * sqrt(x) = 2^k * sqrt(y) |
---|
| 14 | * 2. Bit by bit computation |
---|
| 15 | * Let q = sqrt(y) truncated to i bit after binary point (q = 1), |
---|
| 16 | * i 0 |
---|
| 17 | * i+1 2 |
---|
| 18 | * s = 2*q , and y = 2 * ( y - q ). (1) |
---|
| 19 | * i i i i |
---|
| 20 | * |
---|
| 21 | * To compute q from q , one checks whether |
---|
| 22 | * i+1 i |
---|
| 23 | * |
---|
| 24 | * -(i+1) 2 |
---|
| 25 | * (q + 2 ) <= y. (2) |
---|
| 26 | * i |
---|
| 27 | * -(i+1) |
---|
| 28 | * If (2) is false, then q = q ; otherwise q = q + 2 . |
---|
| 29 | * i+1 i i+1 i |
---|
| 30 | * |
---|
| 31 | * With some algebric manipulation, it is not difficult to see |
---|
| 32 | * that (2) is equivalent to |
---|
| 33 | * -(i+1) |
---|
| 34 | * s + 2 <= y (3) |
---|
| 35 | * i i |
---|
| 36 | * |
---|
| 37 | * The advantage of (3) is that s and y can be computed by |
---|
| 38 | * i i |
---|
| 39 | * the following recurrence formula: |
---|
| 40 | * if (3) is false |
---|
| 41 | * |
---|
| 42 | * s = s , y = y ; (4) |
---|
| 43 | * i+1 i i+1 i |
---|
| 44 | * |
---|
| 45 | * otherwise, |
---|
| 46 | * -i -(i+1) |
---|
| 47 | * s = s + 2 , y = y - s - 2 (5) |
---|
| 48 | * i+1 i i+1 i i |
---|
| 49 | * |
---|
| 50 | * One may easily use induction to prove (4) and (5). |
---|
| 51 | * Note. Since the left hand side of (3) contain only i+2 bits, |
---|
| 52 | * it does not necessary to do a full (53-bit) comparison |
---|
| 53 | * in (3). |
---|
| 54 | * 3. Final rounding |
---|
| 55 | * After generating the 53 bits result, we compute one more bit. |
---|
| 56 | * Together with the remainder, we can decide whether the |
---|
| 57 | * result is exact, bigger than 1/2ulp, or less than 1/2ulp |
---|
| 58 | * (it will never equal to 1/2ulp). |
---|
| 59 | * The rounding mode can be detected by checking whether |
---|
| 60 | * huge + tiny is equal to huge, and whether huge - tiny is |
---|
| 61 | * equal to huge for some floating point number "huge" and "tiny". |
---|
| 62 | * |
---|
| 63 | * Special cases: |
---|
| 64 | * sqrt(+-0) = +-0 ... exact |
---|
| 65 | * sqrt(inf) = inf |
---|
| 66 | * sqrt(-ve) = NaN ... with invalid signal |
---|
| 67 | * sqrt(NaN) = NaN ... with invalid signal for signaling NaN |
---|
| 68 | * |
---|
| 69 | * Other methods : see the appended file at the end of the program below. |
---|
| 70 | *--------------- |
---|
| 71 | */ |
---|
| 72 | static double __ieee754_sqrt(double x) |
---|
| 73 | { |
---|
| 74 | double z; |
---|
| 75 | int32_t sign = (int)0x80000000; |
---|
| 76 | int32_t ix0,s0,q,m,t,i; |
---|
| 77 | uint32_t r,t1,s1,ix1,q1; |
---|
| 78 | |
---|
| 79 | EXTRACT_WORDS(ix0,ix1,x); |
---|
| 80 | |
---|
| 81 | /* take care of Inf and NaN */ |
---|
| 82 | if((ix0&0x7ff00000)==0x7ff00000) { |
---|
| 83 | return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf |
---|
| 84 | sqrt(-inf)=sNaN */ |
---|
| 85 | } |
---|
| 86 | /* take care of zero */ |
---|
| 87 | if(ix0<=0) { |
---|
| 88 | if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */ |
---|
| 89 | else if(ix0<0) |
---|
| 90 | return (x-x)/(x-x); /* sqrt(-ve) = sNaN */ |
---|
| 91 | } |
---|
| 92 | /* normalize x */ |
---|
| 93 | m = (ix0>>20); |
---|
| 94 | if(m==0) { /* subnormal x */ |
---|
| 95 | while(ix0==0) { |
---|
| 96 | m -= 21; |
---|
| 97 | ix0 |= (ix1>>11); ix1 <<= 21; |
---|
| 98 | } |
---|
| 99 | for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1; |
---|
| 100 | m -= i-1; |
---|
| 101 | ix0 |= (ix1>>(32-i)); |
---|
| 102 | ix1 <<= i; |
---|
| 103 | } |
---|
| 104 | m -= 1023; /* unbias exponent */ |
---|
| 105 | ix0 = (ix0&0x000fffff)|0x00100000; |
---|
| 106 | if(m&1){ /* odd m, double x to make it even */ |
---|
| 107 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
| 108 | ix1 += ix1; |
---|
| 109 | } |
---|
| 110 | m >>= 1; /* m = [m/2] */ |
---|
| 111 | |
---|
| 112 | /* generate sqrt(x) bit by bit */ |
---|
| 113 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
| 114 | ix1 += ix1; |
---|
| 115 | q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ |
---|
| 116 | r = 0x00200000; /* r = moving bit from right to left */ |
---|
| 117 | |
---|
| 118 | while(r!=0) { |
---|
| 119 | t = s0+r; |
---|
| 120 | if(t<=ix0) { |
---|
| 121 | s0 = t+r; |
---|
| 122 | ix0 -= t; |
---|
| 123 | q += r; |
---|
| 124 | } |
---|
| 125 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
| 126 | ix1 += ix1; |
---|
| 127 | r>>=1; |
---|
| 128 | } |
---|
| 129 | |
---|
| 130 | r = sign; |
---|
| 131 | while(r!=0) { |
---|
| 132 | t1 = s1+r; |
---|
| 133 | t = s0; |
---|
| 134 | if((t<ix0)||((t==ix0)&&(t1<=ix1))) { |
---|
| 135 | s1 = t1+r; |
---|
| 136 | if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1; |
---|
| 137 | ix0 -= t; |
---|
| 138 | if (ix1 < t1) ix0 -= 1; |
---|
| 139 | ix1 -= t1; |
---|
| 140 | q1 += r; |
---|
| 141 | } |
---|
| 142 | ix0 += ix0 + ((ix1&sign)>>31); |
---|
| 143 | ix1 += ix1; |
---|
| 144 | r>>=1; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /* use floating add to find out rounding direction */ |
---|
| 148 | if((ix0|ix1)!=0) { |
---|
| 149 | z = one-tiny; /* trigger inexact flag */ |
---|
| 150 | if (z>=one) { |
---|
| 151 | z = one+tiny; |
---|
| 152 | if (q1==(uint32_t)0xffffffff) { q1=0; q += 1;} |
---|
| 153 | else if (z>one) { |
---|
| 154 | if (q1==(uint32_t)0xfffffffe) q+=1; |
---|
| 155 | q1+=2; |
---|
| 156 | } else |
---|
| 157 | q1 += (q1&1); |
---|
| 158 | } |
---|
| 159 | } |
---|
| 160 | ix0 = (q>>1)+0x3fe00000; |
---|
| 161 | ix1 = q1>>1; |
---|
| 162 | if ((q&1)==1) ix1 |= sign; |
---|
| 163 | ix0 += (m <<20); |
---|
| 164 | INSERT_WORDS(z,ix0,ix1); |
---|
| 165 | return z; |
---|
| 166 | } |
---|
| 167 | |
---|
[581] | 168 | double sqrt(double x) |
---|
| 169 | { |
---|
[816] | 170 | #if GIET_USE_HARD_FLOAT |
---|
| 171 | double z; |
---|
| 172 | __asm__ ("sqrt.d %0,%1" : "=f" (z) : "f" (x)); |
---|
| 173 | return z; |
---|
| 174 | #else |
---|
| 175 | return __ieee754_sqrt(x); |
---|
| 176 | #endif |
---|
[581] | 177 | } |
---|
| 178 | |
---|
[816] | 179 | /* |
---|
| 180 | * vim: ts=4 : sts=4 : sw=4 : et |
---|
| 181 | */ |
---|