[158] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // File : drivers.c |
---|
[238] | 3 | // Date : 23/05/2013 |
---|
[158] | 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
| 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 7 | // The drivers.c and drivers.h files are part ot the GIET-VM kernel. |
---|
| 8 | // |
---|
[158] | 9 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
| 10 | // - vci_multi_tty |
---|
| 11 | // - vci_multi_timer |
---|
| 12 | // - vci_multi_dma |
---|
| 13 | // - vci_multi_icu |
---|
[253] | 14 | // - vci_xicu |
---|
[158] | 15 | // - vci_gcd |
---|
| 16 | // - vci_frame_buffer |
---|
| 17 | // - vci_block_device |
---|
[253] | 18 | // - vci_multi_nic |
---|
| 19 | // - vci_chbuf_dma |
---|
[158] | 20 | // |
---|
[253] | 21 | // For the peripherals replicated in each cluster (ICU, TIMER, XCU, DMA, MMC), |
---|
[238] | 22 | // the corresponding (virtual) base addresses must be completed by an offset |
---|
| 23 | // depending on the cluster index. |
---|
| 24 | // |
---|
| 25 | // The following global parameters must be defined in the hard_config.h file: |
---|
[189] | 26 | // - NB_CLUSTERS |
---|
| 27 | // - NB_PROCS_MAX |
---|
[238] | 28 | // - NB_TIM_CHANNELS |
---|
| 29 | // - NB_DMA_CHANNELS |
---|
| 30 | // - NB_TTY_CHANNELS_MAX |
---|
[158] | 31 | // |
---|
[218] | 32 | // The following virtual base addresses must be defined in the giet_vsegs.ld file: |
---|
[158] | 33 | // - seg_icu_base |
---|
[253] | 34 | // - seg_xcu_base |
---|
[203] | 35 | // - seg_tim_base |
---|
[238] | 36 | // - seg_dma_base |
---|
[158] | 37 | // - seg_tty_base |
---|
| 38 | // - seg_gcd_base |
---|
[203] | 39 | // - seg_fbf_base |
---|
[158] | 40 | // - seg_ioc_base |
---|
[218] | 41 | // - seg_nic_base |
---|
[238] | 42 | // - seg_cma_base |
---|
| 43 | // - seg_iob_base |
---|
[249] | 44 | // - seg_mmc_base |
---|
[253] | 45 | // - vseg_cluster_increment |
---|
[158] | 46 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 47 | |
---|
[166] | 48 | #include <vm_handler.h> |
---|
[158] | 49 | #include <sys_handler.h> |
---|
| 50 | #include <giet_config.h> |
---|
| 51 | #include <drivers.h> |
---|
| 52 | #include <common.h> |
---|
| 53 | #include <hwr_mapping.h> |
---|
| 54 | #include <mips32_registers.h> |
---|
| 55 | #include <ctx_handler.h> |
---|
| 56 | |
---|
| 57 | #if !defined(NB_CLUSTERS) |
---|
[238] | 58 | # error: You must define NB_CLUSTERS in the hard_config.h file |
---|
[158] | 59 | #endif |
---|
[189] | 60 | |
---|
[249] | 61 | #if (NB_CLUSTERS > 256) |
---|
| 62 | # error: NB_CLUSTERS cannot be larger than 256! |
---|
| 63 | #endif |
---|
| 64 | |
---|
[189] | 65 | #if !defined(NB_PROCS_MAX) |
---|
[238] | 66 | # error: You must define NB_PROCS_MAX in the hard_config.h file |
---|
[189] | 67 | #endif |
---|
| 68 | |
---|
| 69 | #if (NB_PROCS_MAX > 8) |
---|
| 70 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
| 71 | #endif |
---|
| 72 | |
---|
[249] | 73 | #if !defined(GIET_USE_IOMMU) |
---|
| 74 | # error: You must define GIET_USE_IOMMU in the giet_config.h file |
---|
| 75 | #endif |
---|
| 76 | |
---|
[238] | 77 | #if !defined(NB_TTY_CHANNELS) |
---|
| 78 | # error: You must define NB_TTY_CHANNELS in the hard_config.h file |
---|
[158] | 79 | #endif |
---|
| 80 | |
---|
[238] | 81 | #if (NB_TTY_CHANNELS < 1) |
---|
| 82 | # error: NB_TTY_CHANNELS cannot be smaller than 1! |
---|
[165] | 83 | #endif |
---|
| 84 | |
---|
[238] | 85 | #if !defined(NB_DMA_CHANNELS) |
---|
| 86 | # error: You must define NB_DMA_CHANNELS in the hard_config.h file |
---|
[165] | 87 | #endif |
---|
| 88 | |
---|
[238] | 89 | #if (NB_DMA_CHANNELS > 8) |
---|
| 90 | # error: NB_DMA_CHANNELS cannot be smaller than 8! |
---|
[165] | 91 | #endif |
---|
| 92 | |
---|
[238] | 93 | #if !defined(NB_TIM_CHANNELS) |
---|
| 94 | #define NB_TIM_CHANNELS 0 |
---|
[189] | 95 | #endif |
---|
[165] | 96 | |
---|
[238] | 97 | #if ( (NB_TIM_CHANNELS + NB_PROC_MAX) > 32 ) |
---|
| 98 | # error: NB_TIM_CHANNELS + NB_PROCS_MAX cannot be larger than 32 |
---|
[189] | 99 | #endif |
---|
[158] | 100 | |
---|
[238] | 101 | #if !defined(NB_IOC_CHANNELS) |
---|
| 102 | # error: You must define NB_IOC_CHANNELS in the hard_config.h file |
---|
[189] | 103 | #endif |
---|
[158] | 104 | |
---|
[238] | 105 | #if ( NB_IOC_CHANNELS > 8 ) |
---|
| 106 | # error: NB_IOC_CHANNELS cannot be larger than 8 |
---|
| 107 | #endif |
---|
| 108 | |
---|
| 109 | #if !defined(NB_NIC_CHANNELS) |
---|
| 110 | # error: You must define NB_NIC_CHANNELS in the hard_config.h file |
---|
| 111 | #endif |
---|
| 112 | |
---|
| 113 | #if ( NB_NIC_CHANNELS > 8 ) |
---|
| 114 | # error: NB_NIC_CHANNELS cannot be larger than 8 |
---|
| 115 | #endif |
---|
| 116 | |
---|
| 117 | #if !defined(NB_CMA_CHANNELS) |
---|
| 118 | # error: You must define NB_CMA_CHANNELS in the hard_config.h file |
---|
| 119 | #endif |
---|
| 120 | |
---|
| 121 | #if ( NB_CMA_CHANNELS > 8 ) |
---|
| 122 | # error: NB_CMA_CHANNELS cannot be larger than 8 |
---|
| 123 | #endif |
---|
| 124 | |
---|
[215] | 125 | #if !defined( USE_XICU ) |
---|
[238] | 126 | # error: You must define USE_XICU in the hard_config.h file |
---|
[215] | 127 | #endif |
---|
[158] | 128 | |
---|
[249] | 129 | #if !defined( USE_IOB ) |
---|
| 130 | # error: You must define USE_IOB in the hard_config.h file |
---|
[215] | 131 | #endif |
---|
| 132 | |
---|
| 133 | |
---|
[189] | 134 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
[169] | 135 | |
---|
[158] | 136 | ////////////////////////////////////////////////////////////////////////////// |
---|
[228] | 137 | // Timers driver |
---|
[158] | 138 | ////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 139 | // This peripheral is replicated in all clusters. |
---|
[203] | 140 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
---|
[215] | 141 | // component (depending on the USE_XICU parameter). |
---|
[203] | 142 | // There is one timer (or xicu) component per cluster. |
---|
[189] | 143 | // There is two types of timers: |
---|
| 144 | // - "system" timers : one per processor, used for context switch. |
---|
| 145 | // local_id in [0, NB_PROCS_MAX-1], |
---|
| 146 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
[203] | 147 | // For each user timer, the timer_id is stored in the context of the task. |
---|
[238] | 148 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIM_CHANNELS) + local_id |
---|
[158] | 149 | ////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 150 | // The (virtual) base address of the associated segment is: |
---|
| 151 | // |
---|
[253] | 152 | // timer_address = seg_tim_base + cluster_id * vseg_cluster_increment |
---|
| 153 | // or timer_address = seg_xcu_base + cluster_id * vseg_cluster_increment |
---|
[238] | 154 | // |
---|
| 155 | //////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 156 | |
---|
[189] | 157 | // User Timer signaling variables |
---|
| 158 | |
---|
[238] | 159 | #if (NB_TIM_CHANNELS > 0) |
---|
| 160 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS * NB_TIM_CHANNELS] |
---|
| 161 | = { [0 ... ((NB_CLUSTERS * NB_TIM_CHANNELS) - 1)] = 0 }; |
---|
[189] | 162 | #endif |
---|
| 163 | |
---|
[158] | 164 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 165 | // _timer_start() |
---|
| 166 | // This function activates a timer in the vci_timer (or vci_xicu) component |
---|
| 167 | // by writing in the proper register the period value. |
---|
| 168 | // It can be used by both the kernel to initialise a "system" timer, |
---|
[189] | 169 | // or by a task (through a system call) to configure an "user" timer. |
---|
[158] | 170 | // Returns 0 if success, > 0 if error. |
---|
| 171 | ////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 172 | unsigned int _timer_start( unsigned int cluster_id, |
---|
| 173 | unsigned int local_id, |
---|
| 174 | unsigned int period) |
---|
| 175 | { |
---|
[165] | 176 | // parameters checking |
---|
[238] | 177 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 178 | if (local_id >= NB_TIM_CHANNELS) return 2; |
---|
[158] | 179 | |
---|
[215] | 180 | #if USE_XICU |
---|
[253] | 181 | unsigned int* timer_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
| 182 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[158] | 183 | |
---|
[203] | 184 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
---|
[189] | 185 | #else |
---|
[253] | 186 | unsigned int* timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
| 187 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[189] | 188 | |
---|
[203] | 189 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
---|
[228] | 190 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
---|
[189] | 191 | #endif |
---|
[158] | 192 | return 0; |
---|
| 193 | } |
---|
[228] | 194 | |
---|
[189] | 195 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 196 | // _timer_stop() |
---|
| 197 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
---|
| 198 | // by writing in the proper register. |
---|
[189] | 199 | // Returns 0 if success, > 0 if error. |
---|
| 200 | ////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 201 | unsigned int _timer_stop( unsigned int cluster_id, |
---|
| 202 | unsigned int local_id) |
---|
| 203 | { |
---|
[203] | 204 | // parameters checking |
---|
[238] | 205 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 206 | if (local_id >= NB_TIM_CHANNELS) return 2; |
---|
[158] | 207 | |
---|
[215] | 208 | #if USE_XICU |
---|
[253] | 209 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
| 210 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[203] | 211 | |
---|
| 212 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
| 213 | #else |
---|
[253] | 214 | unsigned int* timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
| 215 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[238] | 216 | |
---|
[203] | 217 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
---|
| 218 | #endif |
---|
| 219 | return 0; |
---|
[189] | 220 | } |
---|
[228] | 221 | |
---|
[158] | 222 | ////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 223 | // _timer_reset_irq() |
---|
| 224 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
---|
[204] | 225 | // component by reading/writing in the proper register. |
---|
[203] | 226 | // It can be used by both the isr_switch() for a "system" timer, |
---|
| 227 | // or by the _isr_timer() for an "user" timer. |
---|
[158] | 228 | // Returns 0 if success, > 0 if error. |
---|
| 229 | ////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 230 | unsigned int _timer_reset_irq( unsigned int cluster_id, |
---|
| 231 | unsigned int local_id ) |
---|
| 232 | { |
---|
[203] | 233 | // parameters checking |
---|
[238] | 234 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 235 | if (local_id >= NB_TIM_CHANNELS) return 2; |
---|
[158] | 236 | |
---|
[215] | 237 | #if USE_XICU |
---|
[253] | 238 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
| 239 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[203] | 240 | |
---|
| 241 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
---|
[228] | 242 | bloup++; // to avoid a warning |
---|
[203] | 243 | #else |
---|
[253] | 244 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
| 245 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[203] | 246 | |
---|
| 247 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
---|
| 248 | #endif |
---|
| 249 | return 0; |
---|
[158] | 250 | } |
---|
| 251 | |
---|
[246] | 252 | /////////////////////////////////////////////////////////////////////// |
---|
[232] | 253 | // _timer_reset_irq_cpt() |
---|
[246] | 254 | /////////////////////////////////////////////////////////////////////// |
---|
| 255 | // This function resets the period at the end of which |
---|
| 256 | // an interrupt is sent. To do so, we re-write the period |
---|
[253] | 257 | // in the proper register, what causes the count to restart. |
---|
[246] | 258 | // The period value is read from the same (TIMER_PERIOD) register, |
---|
| 259 | // this is why in appearance we do nothing useful (read a value |
---|
| 260 | // from a register and write this value in the same register) |
---|
| 261 | // This function is called during a context switch (user or preemptive) |
---|
| 262 | /////////////////////////////////////////////////////////////////////// |
---|
[253] | 263 | unsigned int _timer_reset_irq_cpt( unsigned int cluster_id, |
---|
| 264 | unsigned int local_id) { |
---|
[246] | 265 | // parameters checking |
---|
| 266 | if (cluster_id >= NB_CLUSTERS) { |
---|
| 267 | return 1; |
---|
| 268 | } |
---|
| 269 | if (local_id >= NB_TIM_CHANNELS) { |
---|
| 270 | return 2; |
---|
| 271 | } |
---|
[232] | 272 | |
---|
[246] | 273 | #if USE_XICU |
---|
[253] | 274 | unsigned int * timer_address = (unsigned int *) ((unsigned int) &seg_xcu_base + |
---|
| 275 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 276 | |
---|
[246] | 277 | unsigned int timer_period = timer_address[XICU_REG(XICU_PTI_PER, local_id)]; |
---|
[232] | 278 | |
---|
[253] | 279 | // we write 0 first because if the timer is currently running, |
---|
| 280 | //the corresponding timer counter is not reset |
---|
[246] | 281 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
| 282 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = timer_period; |
---|
| 283 | #else |
---|
| 284 | // We suppose that the TIMER_MODE register value is 0x3 |
---|
[253] | 285 | unsigned int * timer_address = (unsigned int *) ((unsigned int)&seg_tim_base + |
---|
| 286 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 287 | |
---|
[246] | 288 | unsigned int timer_period = timer_address[local_id * TIMER_SPAN + TIMER_PERIOD]; |
---|
| 289 | |
---|
| 290 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = timer_period; |
---|
| 291 | #endif |
---|
| 292 | |
---|
| 293 | return 0; |
---|
| 294 | } |
---|
| 295 | |
---|
[158] | 296 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[228] | 297 | // VciMultiTty driver |
---|
[158] | 298 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 299 | // There is only one multi_tty controler in the architecture. |
---|
[238] | 300 | // The total number of TTYs is defined by the configuration parameter NB_TTY_CHANNELS. |
---|
[189] | 301 | // The "system" terminal is TTY[0]. |
---|
| 302 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
| 303 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
| 304 | // be stored in the context of the task by the boot code. |
---|
| 305 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
| 306 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 307 | |
---|
[189] | 308 | // TTY variables |
---|
[238] | 309 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTY_CHANNELS]; |
---|
| 310 | in_unckdata volatile unsigned char _tty_get_full[NB_TTY_CHANNELS] |
---|
| 311 | = { [0 ... NB_TTY_CHANNELS - 1] = 0 }; |
---|
[228] | 312 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
[189] | 313 | |
---|
| 314 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 315 | // _tty_error() |
---|
| 316 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 317 | void _tty_error(unsigned int tty_id, unsigned int task_id) |
---|
| 318 | { |
---|
[189] | 319 | unsigned int proc_id = _procid(); |
---|
| 320 | |
---|
| 321 | _get_lock(&_tty_put_lock); |
---|
[249] | 322 | if (tty_id == 0xFFFFFFFF) _puts("\n[GIET ERROR] no TTY assigned to the task "); |
---|
| 323 | else _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
[228] | 324 | _putd(task_id); |
---|
[189] | 325 | _puts(" on processor "); |
---|
[228] | 326 | _putd(proc_id); |
---|
[189] | 327 | _puts("\n"); |
---|
| 328 | _release_lock(&_tty_put_lock); |
---|
| 329 | } |
---|
[228] | 330 | |
---|
| 331 | |
---|
[189] | 332 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 333 | // _tty_write() |
---|
[158] | 334 | // Write one or several characters directly from a fixed-length user buffer to |
---|
| 335 | // the TTY_WRITE register of the TTY controler. |
---|
| 336 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
| 337 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
| 338 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
| 339 | // The function returns the number of characters that have been written. |
---|
[189] | 340 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 341 | unsigned int _tty_write(const char * buffer, |
---|
| 342 | unsigned int length) |
---|
| 343 | { |
---|
[228] | 344 | unsigned int nwritten; |
---|
[238] | 345 | unsigned int tty_id = _get_context_slot(CTX_TTY_ID); |
---|
| 346 | unsigned int* tty_address = (unsigned int *) &seg_tty_base; |
---|
[158] | 347 | |
---|
[238] | 348 | for (nwritten = 0; nwritten < length; nwritten++) |
---|
| 349 | { |
---|
[165] | 350 | // check tty's status |
---|
[238] | 351 | if ((tty_address[tty_id * TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) break; |
---|
| 352 | tty_address[tty_id * TTY_SPAN + TTY_WRITE] = (unsigned int) buffer[nwritten]; |
---|
[158] | 353 | } |
---|
| 354 | return nwritten; |
---|
| 355 | } |
---|
[228] | 356 | |
---|
[158] | 357 | ////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 358 | // _tty_read() |
---|
[158] | 359 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
[165] | 360 | // the associated kernel buffer, that has been written by the ISR. |
---|
[204] | 361 | // It get the TTY terminal index from the context of the current task. |
---|
[158] | 362 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
| 363 | // buffer, writes this character to the user buffer, and resets the |
---|
| 364 | // _tty_get_full[tty_id] buffer. |
---|
[204] | 365 | // The length argument is not used. |
---|
[158] | 366 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
| 367 | ////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 368 | unsigned int _tty_read(char * buffer, |
---|
| 369 | unsigned int length) |
---|
| 370 | { |
---|
| 371 | unsigned int tty_id = _get_context_slot(CTX_TTY_ID); |
---|
[158] | 372 | |
---|
[238] | 373 | if (_tty_get_full[tty_id] == 0) |
---|
| 374 | { |
---|
[189] | 375 | return 0; |
---|
| 376 | } |
---|
[238] | 377 | else |
---|
| 378 | { |
---|
[158] | 379 | *buffer = _tty_get_buf[tty_id]; |
---|
| 380 | _tty_get_full[tty_id] = 0; |
---|
[189] | 381 | return 1; |
---|
[158] | 382 | } |
---|
[228] | 383 | } |
---|
| 384 | |
---|
[158] | 385 | //////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 386 | // _tty_get_char() |
---|
| 387 | // This function is used by the _isr_tty to read a character in the TTY |
---|
| 388 | // terminal defined by the tty_id argument. The character is stored |
---|
| 389 | // in requested buffer, and the IRQ is acknowledged. |
---|
| 390 | // Returns 0 if success, 1 if tty_id too large. |
---|
[158] | 391 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 392 | unsigned int _tty_get_char(unsigned int tty_id, |
---|
| 393 | unsigned char * buffer) |
---|
| 394 | { |
---|
[204] | 395 | // checking argument |
---|
[238] | 396 | if (tty_id >= NB_TTY_CHANNELS) { return 1; } |
---|
[199] | 397 | |
---|
[204] | 398 | // compute terminal base address |
---|
[228] | 399 | unsigned int * tty_address = (unsigned int *) &seg_tty_base; |
---|
[158] | 400 | |
---|
[228] | 401 | *buffer = (unsigned char) tty_address[tty_id * TTY_SPAN + TTY_READ]; |
---|
[204] | 402 | return 0; |
---|
[158] | 403 | } |
---|
| 404 | |
---|
[228] | 405 | |
---|
[158] | 406 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 407 | // VciMultiIcu or VciXicu driver |
---|
[158] | 408 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 409 | // This hardware component is replicated in all clusters. |
---|
[203] | 410 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
---|
[253] | 411 | // and the number of ICU channels is equal to NB_PROCS_MAX, |
---|
[238] | 412 | // because there is one private interrupt controler per processor. |
---|
[158] | 413 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 414 | // The (virtual) base address of the associated segment is: |
---|
| 415 | // |
---|
[253] | 416 | // icu_address = seg_icu_base + cluster_id * vseg_cluster_increment |
---|
| 417 | // or icu_address = seg_xcu_base + cluster_id * vseg_cluster_increment |
---|
[238] | 418 | // |
---|
| 419 | //////////////////////////////////////////////////////////////////////////////// |
---|
[158] | 420 | |
---|
| 421 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 422 | // _icu_set_mask() |
---|
| 423 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
| 424 | // It set the mask register for the ICU channel identified by the cluster index |
---|
| 425 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
---|
[158] | 426 | // Returns 0 if success, > 0 if error. |
---|
| 427 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 428 | unsigned int _icu_set_mask( unsigned int cluster_id, |
---|
| 429 | unsigned int proc_id, |
---|
| 430 | unsigned int value, |
---|
[253] | 431 | unsigned int is_PTI) |
---|
[238] | 432 | { |
---|
[203] | 433 | // parameters checking |
---|
[238] | 434 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 435 | if (proc_id >= NB_PROCS_MAX) return 1; |
---|
[203] | 436 | |
---|
[215] | 437 | #if USE_XICU |
---|
[253] | 438 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
| 439 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 440 | if (is_PTI) |
---|
[238] | 441 | { |
---|
[228] | 442 | icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
---|
| 443 | } |
---|
[238] | 444 | else |
---|
| 445 | { |
---|
[228] | 446 | icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
---|
| 447 | } |
---|
[189] | 448 | #else |
---|
[253] | 449 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_icu_base + |
---|
| 450 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 451 | |
---|
[203] | 452 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
---|
| 453 | #endif |
---|
[158] | 454 | return 0; |
---|
| 455 | } |
---|
[228] | 456 | |
---|
[158] | 457 | //////////////////////////////////////////////////////////////////////////////// |
---|
[203] | 458 | // _icu_get_index() |
---|
| 459 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
| 460 | // It returns the index of the highest priority (smaller index) active HWI. |
---|
| 461 | // The ICU channel is identified by the cluster index and the processor index. |
---|
[158] | 462 | // Returns 0 if success, > 0 if error. |
---|
| 463 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 464 | unsigned int _icu_get_index( unsigned int cluster_id, |
---|
| 465 | unsigned int proc_id, |
---|
| 466 | unsigned int * buffer) |
---|
| 467 | { |
---|
[203] | 468 | // parameters checking |
---|
[238] | 469 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 470 | if (proc_id >= NB_PROCS_MAX) return 1; |
---|
[203] | 471 | |
---|
[215] | 472 | #if USE_XICU |
---|
[253] | 473 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_xcu_base + |
---|
| 474 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 475 | |
---|
[228] | 476 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
---|
[203] | 477 | unsigned int pti_ok = (prio & 0x00000001); |
---|
| 478 | unsigned int hwi_ok = (prio & 0x00000002); |
---|
| 479 | unsigned int swi_ok = (prio & 0x00000004); |
---|
| 480 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
---|
| 481 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
---|
| 482 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
---|
[238] | 483 | if (pti_ok) { *buffer = pti_id; } |
---|
| 484 | else if (hwi_ok) { *buffer = hwi_id; } |
---|
| 485 | else if (swi_ok) { *buffer = swi_id; } |
---|
| 486 | else { *buffer = 32; } |
---|
[189] | 487 | #else |
---|
[253] | 488 | unsigned int * icu_address = (unsigned int *) ((unsigned int)&seg_icu_base + |
---|
| 489 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 490 | |
---|
[203] | 491 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
---|
| 492 | #endif |
---|
[158] | 493 | return 0; |
---|
| 494 | } |
---|
| 495 | |
---|
| 496 | //////////////////////////////////////////////////////////////////////////////// |
---|
[228] | 497 | // VciGcd driver |
---|
[158] | 498 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 499 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
[165] | 500 | // performing the computation of the GCD of two 32 bits integers. |
---|
[158] | 501 | // It has no DMA capability. |
---|
| 502 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 503 | |
---|
| 504 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 505 | // _gcd_write() |
---|
[158] | 506 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 507 | // Returns 0 if success, > 0 if error. |
---|
| 508 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 509 | unsigned int _gcd_write( unsigned int register_index, |
---|
| 510 | unsigned int value) |
---|
| 511 | { |
---|
[165] | 512 | // parameters checking |
---|
[238] | 513 | if (register_index >= GCD_END) return 1; |
---|
[158] | 514 | |
---|
[228] | 515 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
---|
[165] | 516 | |
---|
| 517 | gcd_address[register_index] = value; // write word |
---|
[158] | 518 | return 0; |
---|
| 519 | } |
---|
[228] | 520 | |
---|
| 521 | |
---|
[158] | 522 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 523 | // _gcd_read() |
---|
[158] | 524 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
| 525 | // Returns 0 if success, > 0 if error. |
---|
| 526 | //////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 527 | unsigned int _gcd_read( unsigned int register_index, |
---|
| 528 | unsigned int * buffer ) |
---|
| 529 | { |
---|
[165] | 530 | // parameters checking |
---|
[238] | 531 | if (register_index >= GCD_END) return 1; |
---|
[158] | 532 | |
---|
[228] | 533 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
---|
[165] | 534 | |
---|
| 535 | *buffer = gcd_address[register_index]; // read word |
---|
[158] | 536 | return 0; |
---|
| 537 | } |
---|
| 538 | |
---|
| 539 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 540 | // VciBlockDevice driver |
---|
| 541 | //////////////////////////////////////////////////////////////////////////////// |
---|
[165] | 542 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
[166] | 543 | // |
---|
| 544 | // The IOMMU can be activated or not: |
---|
| 545 | // |
---|
| 546 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
| 547 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
| 548 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
| 549 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
| 550 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
| 551 | // The number of PT2 entries is dynamically computed and stored in the |
---|
| 552 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
| 553 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
| 554 | // the transfer is completed. |
---|
| 555 | // |
---|
| 556 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
| 557 | // contiguous physical buffer (this is generally true because the user space |
---|
| 558 | // page tables are statically constructed to use contiguous physical memory). |
---|
| 559 | // |
---|
| 560 | // Finally, the memory buffer must fulfill the following conditions: |
---|
| 561 | // - The user buffer must be word aligned, |
---|
| 562 | // - The user buffer must be mapped in user address space, |
---|
| 563 | // - The user buffer must be writable in case of (to_mem) access, |
---|
| 564 | // - The total number of physical pages occupied by the user buffer cannot |
---|
| 565 | // be larger than 512 pages if the IOMMU is activated, |
---|
| 566 | // - All physical pages occupied by the user buffer must be contiguous |
---|
| 567 | // if the IOMMU is not activated. |
---|
| 568 | // An error code is returned if these conditions are not verified. |
---|
| 569 | // |
---|
[158] | 570 | // As the IOC component can be used by several programs running in parallel, |
---|
| 571 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
| 572 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
| 573 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
| 574 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
| 575 | // available. |
---|
| 576 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
| 577 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
| 578 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
| 579 | // variable. |
---|
| 580 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
[166] | 581 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
[158] | 582 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
| 583 | // variable. |
---|
| 584 | // |
---|
| 585 | // In a multi-processing environment, this polling policy should be replaced by |
---|
| 586 | // a descheduling policy for the requesting process. |
---|
| 587 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 588 | |
---|
[189] | 589 | // IOC global variables |
---|
[228] | 590 | in_unckdata volatile unsigned int _ioc_status= 0; |
---|
| 591 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
| 592 | in_unckdata unsigned int _ioc_lock = 0; |
---|
| 593 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
| 594 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
[158] | 595 | |
---|
| 596 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 597 | // _ioc_access() |
---|
[166] | 598 | // This function transfer data between a memory buffer and the block device. |
---|
| 599 | // The buffer lentgth is (count*block_size) bytes. |
---|
| 600 | // Arguments are: |
---|
| 601 | // - to_mem : from external storage to memory when non 0 |
---|
| 602 | // - lba : first block index on the external storage. |
---|
| 603 | // - user_vaddr : virtual base address of the memory buffer. |
---|
| 604 | // - count : number of blocks to be transfered. |
---|
[158] | 605 | // Returns 0 if success, > 0 if error. |
---|
| 606 | /////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 607 | unsigned int _ioc_access( unsigned int to_mem, |
---|
| 608 | unsigned int lba, |
---|
| 609 | unsigned int user_vaddr, |
---|
| 610 | unsigned int count) |
---|
| 611 | { |
---|
| 612 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
| 613 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
| 614 | unsigned int vpn; // current virtual page index in user space |
---|
| 615 | unsigned int ppn; // physical page number |
---|
| 616 | unsigned int flags; // page protection flags |
---|
| 617 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
| 618 | unsigned int ppn_first; // first physical page number for user buffer |
---|
| 619 | unsigned int buf_xaddr = 0; // user buffer virtual address in IO space (if IOMMU) |
---|
| 620 | paddr_t buf_paddr = 0; // user buffer physical address (if no IOMMU), |
---|
[246] | 621 | |
---|
[166] | 622 | // check buffer alignment |
---|
[238] | 623 | if ((unsigned int) user_vaddr & 0x3) |
---|
| 624 | { |
---|
| 625 | _get_lock(&_tty_put_lock); |
---|
| 626 | _puts("[GIET ERROR] in _ioc_access() : user buffer not word aligned\n"); |
---|
| 627 | _release_lock(&_tty_put_lock); |
---|
| 628 | return 1; |
---|
[228] | 629 | } |
---|
[158] | 630 | |
---|
[228] | 631 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base ; |
---|
[204] | 632 | |
---|
[228] | 633 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 634 | unsigned int length = count * block_size; |
---|
[158] | 635 | |
---|
[167] | 636 | // get user space page table virtual address |
---|
[238] | 637 | unsigned int user_pt_vbase = _get_context_slot(CTX_PTAB_ID); |
---|
[228] | 638 | |
---|
[166] | 639 | user_vpn_min = user_vaddr >> 12; |
---|
| 640 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
[158] | 641 | |
---|
[166] | 642 | // loop on all virtual pages covering the user buffer |
---|
[238] | 643 | for (vpn = user_vpn_min, ix2 = 0 ; |
---|
| 644 | vpn <= user_vpn_max ; |
---|
| 645 | vpn++, ix2++ ) |
---|
| 646 | { |
---|
[166] | 647 | // get ppn and flags for each vpn |
---|
[246] | 648 | unsigned int ko = _v2p_translate((page_table_t *) user_pt_vbase, |
---|
| 649 | vpn, |
---|
| 650 | &ppn, |
---|
| 651 | &flags); |
---|
[166] | 652 | // check access rights |
---|
[246] | 653 | if (ko) |
---|
[238] | 654 | { |
---|
| 655 | _get_lock(&_tty_put_lock); |
---|
| 656 | _puts("[GIET ERROR] in _ioc_access() : user buffer unmapped\n"); |
---|
| 657 | _release_lock(&_tty_put_lock); |
---|
| 658 | return 1; |
---|
[228] | 659 | } |
---|
[238] | 660 | if ((flags & PTE_U) == 0) |
---|
| 661 | { |
---|
| 662 | _get_lock(&_tty_put_lock); |
---|
| 663 | _puts("[GIET ERROR] in _ioc_access() : user buffer not in user space\n"); |
---|
| 664 | _release_lock(&_tty_put_lock); |
---|
| 665 | return 1; |
---|
[228] | 666 | } |
---|
[238] | 667 | if (((flags & PTE_W) == 0 ) && to_mem) |
---|
| 668 | { |
---|
| 669 | _get_lock(&_tty_put_lock); |
---|
| 670 | _puts("[GIET ERROR] in _ioc_access() : user buffer not writable\n"); |
---|
| 671 | _release_lock(&_tty_put_lock); |
---|
| 672 | return 1; |
---|
[228] | 673 | } |
---|
[158] | 674 | |
---|
[166] | 675 | // save first ppn value |
---|
[238] | 676 | if (ix2 == 0) ppn_first = ppn; |
---|
[158] | 677 | |
---|
[249] | 678 | if ( GIET_USE_IOMMU && USE_IOB ) // user buffer remapped in the I/0 space |
---|
[238] | 679 | { |
---|
[166] | 680 | // check buffer length < 2 Mbytes |
---|
[238] | 681 | if (ix2 > 511) |
---|
| 682 | { |
---|
| 683 | _get_lock(&_tty_put_lock); |
---|
| 684 | _puts("[GIET ERROR] in _ioc_access() : user buffer > 2 Mbytes\n"); |
---|
| 685 | _release_lock(&_tty_put_lock); |
---|
| 686 | return 1; |
---|
[228] | 687 | } |
---|
[158] | 688 | |
---|
[166] | 689 | // map the physical page in IOMMU page table |
---|
[238] | 690 | _iommu_add_pte2( _ioc_iommu_ix1, // PT1 index |
---|
| 691 | ix2, // PT2 index |
---|
| 692 | ppn, // Physical page number |
---|
| 693 | flags); // Protection flags |
---|
| 694 | |
---|
| 695 | // compute user buffer virtual adress in IO space |
---|
| 696 | buf_xaddr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
[166] | 697 | } |
---|
[238] | 698 | else // No IOMMU |
---|
| 699 | { |
---|
| 700 | // check that physical pages are contiguous |
---|
| 701 | if ((ppn - ppn_first) != ix2) |
---|
| 702 | { |
---|
| 703 | _get_lock(&_tty_put_lock); |
---|
| 704 | _puts("[GIET ERROR] in _ioc_access() : split physical user buffer\n"); |
---|
| 705 | _release_lock(&_tty_put_lock); |
---|
| 706 | return 1; |
---|
[228] | 707 | } |
---|
[238] | 708 | |
---|
| 709 | // compute user buffer physical adress |
---|
| 710 | buf_paddr = (((paddr_t)ppn_first) << 12) | (user_vaddr & 0xFFF); |
---|
[166] | 711 | } |
---|
| 712 | } // end for vpn |
---|
[158] | 713 | |
---|
[166] | 714 | // register the number of pages to be unmapped |
---|
| 715 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
[158] | 716 | |
---|
[254] | 717 | // If no IOB, invalidate L1 cache in case of memory write |
---|
| 718 | if ( to_mem && (USE_IOB == 0) ) _dcache_buf_invalidate((void *) user_vaddr, length); |
---|
[158] | 719 | |
---|
[238] | 720 | #if GIET_DEBUG_IOC_DRIVER |
---|
| 721 | _get_lock(&_tty_put_lock); |
---|
| 722 | _puts("\n[GIET DEBUG] IOC_ACCESS at cycle "); |
---|
| 723 | _putd( _proctime() ); |
---|
| 724 | _puts("\n - proc_id = "); |
---|
| 725 | _putd( _procid() ); |
---|
| 726 | _puts("\n - ioc_vbase = "); |
---|
| 727 | _putx( (unsigned int)ioc_address ); |
---|
| 728 | _puts("\n - psched_vbase = "); |
---|
| 729 | _putx( (unsigned int)_get_sched() ); |
---|
| 730 | _puts("\n - pt_vbase = "); |
---|
| 731 | _putx( user_pt_vbase ); |
---|
| 732 | _puts("\n - user_buf_vbase = "); |
---|
| 733 | _putx( user_vaddr ); |
---|
| 734 | _puts("\n - user_buf_length = "); |
---|
| 735 | _putx( length ); |
---|
| 736 | _puts("\n - user_buf_paddr = "); |
---|
| 737 | _putl( buf_paddr ); |
---|
| 738 | _puts("\n - user_buf_xaddr = "); |
---|
| 739 | _putx( buf_xaddr ); |
---|
| 740 | _puts("\n"); |
---|
| 741 | _release_lock(&_tty_put_lock); |
---|
| 742 | #endif |
---|
[166] | 743 | |
---|
[254] | 744 | // If IOB, invalidate L2 cache in case of memory write |
---|
[249] | 745 | if ( to_mem && USE_IOB ) _memc_inval( buf_paddr, length ); |
---|
| 746 | |
---|
[166] | 747 | // get the lock on ioc device |
---|
[228] | 748 | _get_lock(&_ioc_lock); |
---|
[158] | 749 | |
---|
[166] | 750 | // peripheral configuration |
---|
[249] | 751 | if ( GIET_USE_IOMMU && USE_IOB ) |
---|
[238] | 752 | { |
---|
| 753 | ioc_address[BLOCK_DEVICE_BUFFER] = buf_xaddr; |
---|
| 754 | } |
---|
| 755 | else |
---|
| 756 | { |
---|
| 757 | ioc_address[BLOCK_DEVICE_BUFFER] = (unsigned int)buf_paddr; |
---|
| 758 | ioc_address[BLOCK_DEVICE_BUFFER_EXT] = (unsigned int)(buf_paddr>>32); |
---|
| 759 | } |
---|
[228] | 760 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
| 761 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
[238] | 762 | if (to_mem == 0) |
---|
| 763 | { |
---|
[228] | 764 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
| 765 | } |
---|
[238] | 766 | else |
---|
| 767 | { |
---|
[228] | 768 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
| 769 | } |
---|
[158] | 770 | return 0; |
---|
| 771 | } |
---|
[228] | 772 | |
---|
[158] | 773 | ///////////////////////////////////////////////////////////////////////////////// |
---|
| 774 | // _ioc_completed() |
---|
| 775 | // |
---|
| 776 | // This function checks completion of an I/O transfer and reports errors. |
---|
[166] | 777 | // As it is a blocking call, the processor is stalled. |
---|
| 778 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
| 779 | // space are unmapped, and the IOB TLB is cleared. |
---|
[158] | 780 | // Returns 0 if success, > 0 if error. |
---|
| 781 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 782 | unsigned int _ioc_completed() |
---|
| 783 | { |
---|
[228] | 784 | unsigned int ret; |
---|
| 785 | unsigned int ix2; |
---|
[158] | 786 | |
---|
[166] | 787 | // busy waiting |
---|
[238] | 788 | while (_ioc_done == 0) { asm volatile("nop"); } |
---|
[158] | 789 | |
---|
[238] | 790 | #if GIET_DEBUG_IOC_DRIVER |
---|
| 791 | _get_lock(&_tty_put_lock); |
---|
| 792 | _puts("\n[GIET DEBUG] IOC_COMPLETED at cycle "); |
---|
| 793 | _putd( _proctime() ); |
---|
| 794 | _puts("\n - proc_id = "); |
---|
| 795 | _putd( _procid() ); |
---|
| 796 | _puts("\n"); |
---|
| 797 | _release_lock(&_tty_put_lock); |
---|
| 798 | #endif |
---|
| 799 | |
---|
[166] | 800 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
[249] | 801 | if ( GIET_USE_IOMMU && USE_IOB ) |
---|
[238] | 802 | { |
---|
[228] | 803 | unsigned int * iob_address = (unsigned int *) &seg_iob_base; |
---|
[166] | 804 | |
---|
[238] | 805 | for (ix2 = 0; ix2 < _ioc_iommu_npages; ix2++) |
---|
| 806 | { |
---|
[166] | 807 | // unmap the page in IOMMU page table |
---|
[228] | 808 | _iommu_inval_pte2( |
---|
| 809 | _ioc_iommu_ix1, // PT1 index |
---|
| 810 | ix2 ); // PT2 index |
---|
[166] | 811 | |
---|
| 812 | // clear IOMMU TLB |
---|
[169] | 813 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
[166] | 814 | } |
---|
| 815 | } |
---|
| 816 | |
---|
| 817 | // test IOC status |
---|
[158] | 818 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
[238] | 819 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) ret = 1; // error |
---|
| 820 | else ret = 0; // success |
---|
[158] | 821 | |
---|
[166] | 822 | // reset synchronization variables |
---|
[223] | 823 | _ioc_done = 0; |
---|
[228] | 824 | asm volatile("sync"); |
---|
[223] | 825 | _ioc_lock = 0; |
---|
[158] | 826 | |
---|
| 827 | return ret; |
---|
| 828 | } |
---|
[228] | 829 | |
---|
| 830 | |
---|
[166] | 831 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 832 | // _ioc_read() |
---|
[166] | 833 | // Transfer data from the block device to a memory buffer in user space. |
---|
| 834 | // - lba : first block index on the block device |
---|
| 835 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 836 | // - count : number of blocks to be transfered. |
---|
| 837 | // Returns 0 if success, > 0 if error. |
---|
| 838 | /////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 839 | unsigned int _ioc_read( unsigned int lba, |
---|
| 840 | void * buffer, |
---|
| 841 | unsigned int count) |
---|
| 842 | { |
---|
[228] | 843 | return _ioc_access( |
---|
| 844 | 1, // read access |
---|
| 845 | lba, |
---|
| 846 | (unsigned int) buffer, |
---|
| 847 | count); |
---|
[166] | 848 | } |
---|
[228] | 849 | |
---|
| 850 | |
---|
[166] | 851 | /////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 852 | // _ioc_write() |
---|
[166] | 853 | // Transfer data from a memory buffer in user space to the block device. |
---|
| 854 | // - lba : first block index on the block device |
---|
| 855 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
| 856 | // - count : number of blocks to be transfered. |
---|
| 857 | // Returns 0 if success, > 0 if error. |
---|
| 858 | /////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 859 | unsigned int _ioc_write( unsigned int lba, |
---|
| 860 | const void * buffer, |
---|
| 861 | unsigned int count) |
---|
| 862 | { |
---|
[228] | 863 | return _ioc_access( |
---|
| 864 | 0, // write access |
---|
| 865 | lba, |
---|
| 866 | (unsigned int) buffer, |
---|
| 867 | count); |
---|
[166] | 868 | } |
---|
[228] | 869 | |
---|
| 870 | |
---|
[204] | 871 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 872 | // _ioc_get_status() |
---|
| 873 | // This function returns the transfert status, and acknowledge the IRQ. |
---|
| 874 | // Returns 0 if success, > 0 if error. |
---|
| 875 | /////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 876 | unsigned int _ioc_get_status(unsigned int * status) |
---|
| 877 | { |
---|
[204] | 878 | // get IOC base address |
---|
[228] | 879 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base; |
---|
[166] | 880 | |
---|
[204] | 881 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
---|
| 882 | return 0; |
---|
| 883 | } |
---|
| 884 | |
---|
[228] | 885 | |
---|
[237] | 886 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 887 | // _ioc_get_block_size() |
---|
| 888 | // This function returns the block_size with which the IOC has been configured. |
---|
| 889 | /////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 890 | unsigned int _ioc_get_block_size() |
---|
| 891 | { |
---|
[237] | 892 | // get IOC base address |
---|
| 893 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base; |
---|
| 894 | |
---|
| 895 | return ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
| 896 | } |
---|
| 897 | |
---|
| 898 | |
---|
[158] | 899 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 900 | // VciMultiDma driver |
---|
| 901 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 902 | // The DMA controllers are physically distributed in the clusters. |
---|
[238] | 903 | // There is (NB_CLUSTERS * NB_DMA_CHANNELS) channels, indexed by a global index: |
---|
| 904 | // dma_id = cluster_id * NB_DMA_CHANNELS + loc_id |
---|
[189] | 905 | // |
---|
[238] | 906 | // As a DMA channel is a private ressource allocated to a task, |
---|
| 907 | // there is no lock protecting exclusive access to the channel. |
---|
[189] | 908 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
| 909 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
| 910 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
[238] | 911 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 912 | // The (virtual) base address of the associated segment is: |
---|
[189] | 913 | // |
---|
[253] | 914 | // dma_address = seg_dma_base + cluster_id * vseg_cluster_increment |
---|
[238] | 915 | // |
---|
| 916 | //////////////////////////////////////////////////////////////////////////////// |
---|
[189] | 917 | |
---|
[238] | 918 | #if NB_DMA_CHANNELS > 0 |
---|
[189] | 919 | |
---|
[238] | 920 | // in_unckdata unsigned int _dma_lock[NB_DMA_CHANNELS * NB_CLUSTERS] |
---|
| 921 | // = { [0 ... (NB_DMA_CHANNELS * NB_CLUSTERS) - 1] = 0 }; |
---|
[189] | 922 | |
---|
[238] | 923 | in_unckdata volatile unsigned int _dma_done[NB_DMA_CHANNELS * NB_CLUSTERS] |
---|
| 924 | = { [0 ... (NB_DMA_CHANNELS * NB_CLUSTERS) - 1] = 0 }; |
---|
| 925 | in_unckdata volatile unsigned int _dma_status[NB_DMA_CHANNELS * NB_CLUSTERS]; |
---|
[228] | 926 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
[238] | 927 | in_unckdata unsigned int _dma_iommu_npages[NB_DMA_CHANNELS * NB_CLUSTERS]; |
---|
[213] | 928 | #endif |
---|
[189] | 929 | |
---|
| 930 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 931 | // _dma_reset_irq() |
---|
| 932 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 933 | unsigned int _dma_reset_irq( unsigned int cluster_id, |
---|
| 934 | unsigned int channel_id) |
---|
| 935 | { |
---|
| 936 | #if NB_DMA_CHANNELS > 0 |
---|
[204] | 937 | // parameters checking |
---|
[238] | 938 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 939 | if (channel_id >= NB_DMA_CHANNELS) return 1; |
---|
[204] | 940 | |
---|
| 941 | // compute DMA base address |
---|
[253] | 942 | unsigned int * dma_address = (unsigned int *) ((unsigned int)&seg_dma_base + |
---|
| 943 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[204] | 944 | |
---|
[228] | 945 | dma_address[channel_id * DMA_SPAN + DMA_RESET] = 0; |
---|
[204] | 946 | return 0; |
---|
[213] | 947 | #else |
---|
| 948 | return -1; |
---|
| 949 | #endif |
---|
[204] | 950 | } |
---|
[218] | 951 | |
---|
[204] | 952 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 953 | // _dma_get_status() |
---|
| 954 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 955 | unsigned int _dma_get_status( unsigned int cluster_id, |
---|
| 956 | unsigned int channel_id, |
---|
| 957 | unsigned int * status) |
---|
| 958 | { |
---|
| 959 | #if NB_DMA_CHANNELS > 0 |
---|
[204] | 960 | // parameters checking |
---|
[238] | 961 | if (cluster_id >= NB_CLUSTERS) return 1; |
---|
| 962 | if (channel_id >= NB_DMA_CHANNELS) return 1; |
---|
[204] | 963 | |
---|
| 964 | // compute DMA base address |
---|
[253] | 965 | unsigned int * dma_address = (unsigned int *) ((unsigned int)&seg_dma_base + |
---|
| 966 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[207] | 967 | |
---|
[228] | 968 | *status = dma_address[channel_id * DMA_SPAN + DMA_LEN]; |
---|
[204] | 969 | return 0; |
---|
[213] | 970 | #else |
---|
| 971 | return -1; |
---|
| 972 | #endif |
---|
[204] | 973 | } |
---|
| 974 | |
---|
| 975 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[218] | 976 | // _dma_transfer() |
---|
| 977 | // Transfer data between a user buffer and a device buffer using DMA. |
---|
[238] | 978 | // Only one device type is supported: Frame Buffer (dev_type == 0) |
---|
[218] | 979 | // Arguments are: |
---|
| 980 | // - dev_type : device type. |
---|
| 981 | // - to_user : from device buffer to user buffer when true. |
---|
| 982 | // - offset : offset (in bytes) in the device buffer. |
---|
| 983 | // - user_vaddr : virtual base address of the user buffer. |
---|
| 984 | // - length : number of bytes to be transfered. |
---|
| 985 | // |
---|
[238] | 986 | // The cluster_id and channel_id are obtained from task context (CTX_DMA_ID). |
---|
[207] | 987 | // The user buffer must be mapped in user address space and word-aligned. |
---|
[169] | 988 | // The user buffer length must be multiple of 4 bytes. |
---|
[238] | 989 | // We compute the physical base addresses for both the device buffer |
---|
[189] | 990 | // and the user buffer before programming the DMA transfer. |
---|
[207] | 991 | // The GIET being fully static, we don't need to split the transfer in 4 Kbytes |
---|
[189] | 992 | // pages, because the user buffer is contiguous in physical space. |
---|
[158] | 993 | // Returns 0 if success, > 0 if error. |
---|
| 994 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 995 | unsigned int _dma_transfer( unsigned int dev_type, |
---|
| 996 | unsigned int to_user, |
---|
| 997 | unsigned int offset, |
---|
| 998 | unsigned int user_vaddr, |
---|
| 999 | unsigned int length ) |
---|
| 1000 | { |
---|
| 1001 | #if NB_DMA_CHANNELS > 0 |
---|
[228] | 1002 | unsigned int ko; // unsuccessfull V2P translation |
---|
[238] | 1003 | unsigned int device_vbase; // device buffer vbase address |
---|
[228] | 1004 | unsigned int flags; // protection flags |
---|
| 1005 | unsigned int ppn; // physical page number |
---|
[238] | 1006 | paddr_t user_pbase; // user buffer pbase address |
---|
| 1007 | paddr_t device_pbase; // frame buffer pbase address |
---|
[158] | 1008 | |
---|
[189] | 1009 | // check user buffer address and length alignment |
---|
[238] | 1010 | if ((user_vaddr & 0x3) || (length & 0x3)) |
---|
| 1011 | { |
---|
[203] | 1012 | _get_lock(&_tty_put_lock); |
---|
[218] | 1013 | _puts("\n[GIET ERROR] in _dma_transfer : user buffer not word aligned\n"); |
---|
[203] | 1014 | _release_lock(&_tty_put_lock); |
---|
[189] | 1015 | return 1; |
---|
| 1016 | } |
---|
[169] | 1017 | |
---|
[218] | 1018 | // get DMA channel and compute DMA vbase address |
---|
[238] | 1019 | unsigned int dma_id = _get_context_slot(CTX_DMA_ID); |
---|
| 1020 | if ( dma_id == 0xFFFFFFFF ) |
---|
| 1021 | { |
---|
| 1022 | _get_lock(&_tty_put_lock); |
---|
| 1023 | _puts("\n[GIET ERROR] in _dma_transfer : no DMA channel allocated\n"); |
---|
| 1024 | _release_lock(&_tty_put_lock); |
---|
| 1025 | return 1; |
---|
| 1026 | } |
---|
| 1027 | unsigned int cluster_id = dma_id / NB_DMA_CHANNELS; |
---|
| 1028 | unsigned int channel_id = dma_id % NB_DMA_CHANNELS; |
---|
[253] | 1029 | unsigned int * dma_vbase = (unsigned int *) ((unsigned int)&seg_dma_base + |
---|
| 1030 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[218] | 1031 | // get page table address |
---|
[238] | 1032 | unsigned int user_ptab = _get_context_slot(CTX_PTAB_ID); |
---|
[169] | 1033 | |
---|
[238] | 1034 | // get devic buffer virtual address, depending on peripheral type |
---|
| 1035 | if (dev_type == 0) |
---|
| 1036 | { |
---|
| 1037 | device_vbase = (unsigned int) &seg_fbf_base + offset; |
---|
[228] | 1038 | } |
---|
[238] | 1039 | else |
---|
| 1040 | { |
---|
| 1041 | _get_lock(&_tty_put_lock); |
---|
| 1042 | _puts("\n[GIET ERROR] in _dma_transfer : device type not supported\n"); |
---|
| 1043 | _release_lock(&_tty_put_lock); |
---|
| 1044 | return 1; |
---|
[228] | 1045 | } |
---|
[189] | 1046 | |
---|
[218] | 1047 | // get device buffer physical address |
---|
[238] | 1048 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
| 1049 | (device_vbase >> 12), |
---|
| 1050 | &ppn, |
---|
| 1051 | &flags ); |
---|
| 1052 | if (ko) |
---|
| 1053 | { |
---|
[203] | 1054 | _get_lock(&_tty_put_lock); |
---|
[218] | 1055 | _puts("\n[GIET ERROR] in _dma_transfer : device buffer unmapped\n"); |
---|
[203] | 1056 | _release_lock(&_tty_put_lock); |
---|
[238] | 1057 | return 1; |
---|
[189] | 1058 | } |
---|
[238] | 1059 | device_pbase = ((paddr_t)ppn << 12) | (device_vbase & 0x00000FFF); |
---|
[189] | 1060 | |
---|
[218] | 1061 | // Compute user buffer physical address |
---|
[238] | 1062 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
| 1063 | (user_vaddr >> 12), |
---|
| 1064 | &ppn, |
---|
| 1065 | &flags ); |
---|
| 1066 | if (ko) |
---|
| 1067 | { |
---|
[203] | 1068 | _get_lock(&_tty_put_lock); |
---|
[218] | 1069 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer unmapped\n"); |
---|
[203] | 1070 | _release_lock(&_tty_put_lock); |
---|
[238] | 1071 | return 1; |
---|
[189] | 1072 | } |
---|
[238] | 1073 | if ((flags & PTE_U) == 0) |
---|
| 1074 | { |
---|
[203] | 1075 | _get_lock(&_tty_put_lock); |
---|
[218] | 1076 | _puts("[GIET ERROR] in _dma_transfer() : user buffer not in user space\n"); |
---|
[203] | 1077 | _release_lock(&_tty_put_lock); |
---|
[238] | 1078 | return 1; |
---|
[189] | 1079 | } |
---|
[238] | 1080 | if (((flags & PTE_W) == 0 ) && to_user) |
---|
| 1081 | { |
---|
[203] | 1082 | _get_lock(&_tty_put_lock); |
---|
[218] | 1083 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer not writable\n"); |
---|
[203] | 1084 | _release_lock(&_tty_put_lock); |
---|
[238] | 1085 | return 1; |
---|
[189] | 1086 | } |
---|
[238] | 1087 | user_pbase = (((paddr_t)ppn) << 12) | (user_vaddr & 0x00000FFF); |
---|
[189] | 1088 | |
---|
[238] | 1089 | /* This is a draft for IOMMU support |
---|
[228] | 1090 | |
---|
[189] | 1091 | // loop on all virtual pages covering the user buffer |
---|
[169] | 1092 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
| 1093 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
| 1094 | unsigned int ix2 = 0; |
---|
| 1095 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
[158] | 1096 | |
---|
[169] | 1097 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
| 1098 | { |
---|
[228] | 1099 | // get ppn and flags for each vpn |
---|
| 1100 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
| 1101 | vpn, |
---|
| 1102 | &ppn, |
---|
| 1103 | &flags ); |
---|
[158] | 1104 | |
---|
[228] | 1105 | // check access rights |
---|
| 1106 | if ( ko ) return 3; // unmapped |
---|
| 1107 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
| 1108 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
[158] | 1109 | |
---|
[228] | 1110 | // save first ppn value |
---|
| 1111 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
[169] | 1112 | |
---|
[249] | 1113 | if ( GIET_USE_IOMMU && USE_IOB ) // user buffer remapped in the I/0 space |
---|
[228] | 1114 | { |
---|
| 1115 | // check buffer length < 2 Mbytes |
---|
| 1116 | if ( ix2 > 511 ) return 2; |
---|
[169] | 1117 | |
---|
[228] | 1118 | // map the physical page in IOMMU page table |
---|
| 1119 | _iommu_add_pte2( ix1, // PT1 index |
---|
| 1120 | ix2, // PT2 index |
---|
| 1121 | ppn, // physical page number |
---|
| 1122 | flags ); // protection flags |
---|
| 1123 | } |
---|
| 1124 | else // no IOMMU : check that physical pages are contiguous |
---|
| 1125 | { |
---|
| 1126 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
| 1127 | } |
---|
[169] | 1128 | |
---|
[228] | 1129 | // increment page index |
---|
| 1130 | ix2++; |
---|
[169] | 1131 | } // end for vpn |
---|
| 1132 | |
---|
[189] | 1133 | // register the number of pages to be unmapped if iommu activated |
---|
[169] | 1134 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
| 1135 | |
---|
[189] | 1136 | */ |
---|
[204] | 1137 | |
---|
[169] | 1138 | // invalidate data cache in case of memory write |
---|
[238] | 1139 | if (to_user) _dcache_buf_invalidate((void *) user_vaddr, length); |
---|
[228] | 1140 | |
---|
[238] | 1141 | // get the lock |
---|
| 1142 | // _get_lock(&_dma_lock[dma_id]); |
---|
[169] | 1143 | |
---|
[238] | 1144 | #if GIET_DEBUG_DMA_DRIVER |
---|
| 1145 | _get_lock(&_tty_put_lock); |
---|
| 1146 | _puts("\n[GIET DEBUG] DMA TRANSFER at cycle "); |
---|
| 1147 | _putd( _proctime() ); |
---|
| 1148 | _puts("\n - cluster_id = "); |
---|
| 1149 | _putx( cluster_id ); |
---|
| 1150 | _puts("\n - channel_id = "); |
---|
| 1151 | _putx( channel_id ); |
---|
| 1152 | _puts("\n - dma_vbase = "); |
---|
| 1153 | _putx( (unsigned int)dma_vbase ); |
---|
| 1154 | _puts("\n - device_buf_vbase = "); |
---|
| 1155 | _putx( device_vbase ); |
---|
| 1156 | _puts("\n - device_buf_pbase = "); |
---|
| 1157 | _putl( device_pbase ); |
---|
| 1158 | _puts("\n - user_buf_vbase = "); |
---|
| 1159 | _putx( user_vaddr ); |
---|
| 1160 | _puts("\n - user_buf_pbase = "); |
---|
| 1161 | _putl( user_pbase ); |
---|
| 1162 | _puts("\n"); |
---|
| 1163 | _release_lock(&_tty_put_lock); |
---|
| 1164 | #endif |
---|
| 1165 | |
---|
[169] | 1166 | // DMA configuration |
---|
[238] | 1167 | if (to_user) |
---|
| 1168 | { |
---|
| 1169 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC] = (unsigned int)(device_pbase); |
---|
| 1170 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC_EXT] = (unsigned int)(device_pbase>>32); |
---|
| 1171 | dma_vbase[channel_id * DMA_SPAN + DMA_DST] = (unsigned int)(user_pbase); |
---|
| 1172 | dma_vbase[channel_id * DMA_SPAN + DMA_DST_EXT] = (unsigned int)(user_pbase>>32); |
---|
[169] | 1173 | } |
---|
[238] | 1174 | else |
---|
| 1175 | { |
---|
| 1176 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC] = (unsigned int)(user_pbase); |
---|
| 1177 | dma_vbase[channel_id * DMA_SPAN + DMA_SRC_EXT] = (unsigned int)(user_pbase>>32); |
---|
| 1178 | dma_vbase[channel_id * DMA_SPAN + DMA_DST] = (unsigned int)(device_pbase); |
---|
| 1179 | dma_vbase[channel_id * DMA_SPAN + DMA_DST_EXT] = (unsigned int)(device_pbase>>32); |
---|
[169] | 1180 | } |
---|
[238] | 1181 | dma_vbase[channel_id * DMA_SPAN + DMA_LEN] = (unsigned int) length; |
---|
[228] | 1182 | |
---|
[158] | 1183 | return 0; |
---|
[238] | 1184 | |
---|
| 1185 | #else // NB_DMA_CHANNELS == 0 |
---|
| 1186 | _get_lock(&_tty_put_lock); |
---|
| 1187 | _puts("\n[GIET ERROR] in _dma_transfer() : NB_DMA_CHANNELS == 0"); |
---|
| 1188 | _release_lock(&_tty_put_lock); |
---|
| 1189 | return 1; |
---|
[213] | 1190 | #endif |
---|
[238] | 1191 | |
---|
[218] | 1192 | } // end _dma_transfer() |
---|
| 1193 | |
---|
[169] | 1194 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[218] | 1195 | // _dma_completed() |
---|
| 1196 | // This function checks completion of a DMA transfer to or from a peripheral |
---|
| 1197 | // device (Frame Buffer or Multi-Nic). |
---|
| 1198 | // As it is a blocking call, the processor is busy waiting. |
---|
| 1199 | // Returns 0 if success, > 0 if error |
---|
| 1200 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
| 1201 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 1202 | unsigned int _dma_completed() |
---|
| 1203 | { |
---|
| 1204 | #if NB_DMA_CHANNELS > 0 |
---|
| 1205 | unsigned int dma_id = _get_context_slot(CTX_DMA_ID); |
---|
[228] | 1206 | unsigned int dma_ret; |
---|
[218] | 1207 | |
---|
| 1208 | // busy waiting with a pseudo random delay between bus access |
---|
[238] | 1209 | while (_dma_done[dma_id] == 0) |
---|
| 1210 | { |
---|
[228] | 1211 | unsigned int delay = (( _proctime() ^ _procid() << 4) & 0x3F) + 1; |
---|
| 1212 | asm volatile( |
---|
| 1213 | "move $3, %0 \n" |
---|
| 1214 | "loop_nic_completed: \n" |
---|
| 1215 | "addi $3, $3, -1 \n" |
---|
| 1216 | "bnez $3, loop_nic_completed \n" |
---|
| 1217 | "nop \n" |
---|
| 1218 | : |
---|
| 1219 | : "r" (delay) |
---|
| 1220 | : "$3"); |
---|
[218] | 1221 | } |
---|
[228] | 1222 | |
---|
[238] | 1223 | #if GIET_DEBUG_DMA_DRIVER |
---|
| 1224 | _get_lock(&_tty_put_lock); |
---|
| 1225 | _puts("\n[GIET DEBUG] DMA COMPLETED at cycle "); |
---|
| 1226 | _putd( _proctime() ); |
---|
| 1227 | _puts("\n - cluster_id = "); |
---|
| 1228 | _putx( dma_id/NB_DMA_CHANNELS ); |
---|
| 1229 | _puts("\n - channel_id = "); |
---|
| 1230 | _putx( dma_id%NB_DMA_CHANNELS ); |
---|
| 1231 | _puts("\n"); |
---|
| 1232 | _release_lock(&_tty_put_lock); |
---|
| 1233 | #endif |
---|
[218] | 1234 | |
---|
| 1235 | // reset synchronization variables |
---|
[223] | 1236 | _dma_done[dma_id] = 0; |
---|
[225] | 1237 | dma_ret = _dma_status[dma_id]; |
---|
| 1238 | asm volatile("sync\n"); |
---|
[218] | 1239 | |
---|
[238] | 1240 | // _dma_lock[dma_id] = 0; |
---|
| 1241 | |
---|
[223] | 1242 | return dma_ret; |
---|
[218] | 1243 | |
---|
[238] | 1244 | #else // NB_DMA_CHANNELS == 0 |
---|
[218] | 1245 | return -1; |
---|
| 1246 | #endif |
---|
[238] | 1247 | |
---|
[218] | 1248 | } // end _dma_completed |
---|
| 1249 | |
---|
[238] | 1250 | |
---|
[218] | 1251 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[228] | 1252 | // VciFrameBuffer driver |
---|
[218] | 1253 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1254 | // There three methods to access the VciFrameBuffer device: |
---|
[218] | 1255 | // |
---|
[253] | 1256 | // 1) The _fb_sync_write() and _fb_sync_read() functions use a memcpy strategy |
---|
| 1257 | // to implement the transfer between a data buffer (user space) and the frame |
---|
[218] | 1258 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
| 1259 | // |
---|
[253] | 1260 | // 2) The _fb_dma_write(), _fb_dma_read() and _fb_mdma_completed() functions use |
---|
| 1261 | // the VciMultiDma components (distributed in the clusters) to transfer data |
---|
| 1262 | // between the user buffer and the frame buffer. |
---|
| 1263 | // A DMA channel is allocated to the task requesting it in the mapping_info, |
---|
| 1264 | // and stored in the task context. |
---|
| 1265 | // |
---|
| 1266 | // 3) The _fb_cma_init(), _fb_cma_write() and _fb_cma_stop() functions use |
---|
| 1267 | // the VciChbufDma component (non replicated) to transfer a flow of images from |
---|
| 1268 | // an user space chained buffer (two buffers) to the frame buffer. |
---|
[254] | 1269 | // A CMA channel must be allocated to the task requesting it in the mapping_info, |
---|
[253] | 1270 | // and stored in the task context. |
---|
[218] | 1271 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1272 | |
---|
| 1273 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1274 | // _fb_sync_write() |
---|
| 1275 | // Transfer data from an memory buffer to the frame_buffer device using a memcpy. |
---|
| 1276 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1277 | // - buffer : base address of the memory buffer. |
---|
| 1278 | // - length : number of bytes to be transfered. |
---|
| 1279 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[246] | 1280 | |
---|
| 1281 | unsigned int _fb_sync_write(unsigned int offset, |
---|
| 1282 | const void * buffer, |
---|
| 1283 | unsigned int length) |
---|
[238] | 1284 | { |
---|
[246] | 1285 | unsigned char * fb_address = (unsigned char *) &seg_fbf_base + offset; |
---|
[228] | 1286 | memcpy((void *) fb_address, (void *) buffer, length); |
---|
[218] | 1287 | return 0; |
---|
| 1288 | } |
---|
| 1289 | |
---|
[228] | 1290 | |
---|
[218] | 1291 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1292 | // _fb_sync_read() |
---|
| 1293 | // Transfer data from the frame_buffer device to a memory buffer using a memcpy. |
---|
| 1294 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1295 | // - buffer : base address of the memory buffer. |
---|
| 1296 | // - length : number of bytes to be transfered. |
---|
| 1297 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 1298 | unsigned int _fb_sync_read( unsigned int offset, |
---|
| 1299 | const void* buffer, |
---|
| 1300 | unsigned int length) |
---|
| 1301 | { |
---|
| 1302 | unsigned char* fb_address = (unsigned char *) &seg_fbf_base + offset; |
---|
[228] | 1303 | memcpy((void *) buffer, (void *) fb_address, length); |
---|
[218] | 1304 | return 0; |
---|
| 1305 | } |
---|
| 1306 | |
---|
[228] | 1307 | |
---|
[218] | 1308 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1309 | // _fb_dma_write() |
---|
[169] | 1310 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
| 1311 | // - offset : offset (in bytes) in the frame buffer. |
---|
| 1312 | // - buffer : base address of the memory buffer. |
---|
| 1313 | // - length : number of bytes to be transfered. |
---|
| 1314 | // Returns 0 if success, > 0 if error. |
---|
| 1315 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1316 | unsigned int _fb_dma_write( unsigned int offset, |
---|
| 1317 | const void* buffer, |
---|
| 1318 | unsigned int length) |
---|
[238] | 1319 | { |
---|
| 1320 | return _dma_transfer( 0, // frame buffer |
---|
| 1321 | 0, // write |
---|
| 1322 | offset, |
---|
| 1323 | (unsigned int) buffer, |
---|
| 1324 | length ); |
---|
[158] | 1325 | } |
---|
| 1326 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1327 | // _fb_dma_read() |
---|
[169] | 1328 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
[158] | 1329 | // - offset : offset (in bytes) in the frame buffer. |
---|
[253] | 1330 | // - buffer : virtual base address of the user buffer. |
---|
| 1331 | // - length : buffer size (number of bytes) |
---|
[158] | 1332 | // Returns 0 if success, > 0 if error. |
---|
| 1333 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1334 | unsigned int _fb_dma_read( unsigned int offset, |
---|
| 1335 | const void* buffer, |
---|
| 1336 | unsigned int length ) |
---|
[238] | 1337 | { |
---|
| 1338 | return _dma_transfer( 0, // frame buffer |
---|
| 1339 | 1, // read |
---|
| 1340 | offset, |
---|
| 1341 | (unsigned int) buffer, |
---|
| 1342 | length ); |
---|
[158] | 1343 | } |
---|
| 1344 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1345 | // _fb_completed() |
---|
| 1346 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
[169] | 1347 | // As it is a blocking call, the processor is busy waiting. |
---|
| 1348 | // Returns 0 if success, > 0 if error |
---|
| 1349 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
[158] | 1350 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1351 | unsigned int _fb_dma_completed() |
---|
[238] | 1352 | { |
---|
[218] | 1353 | return _dma_completed(); |
---|
| 1354 | } |
---|
[158] | 1355 | |
---|
[253] | 1356 | // This structure contains two chbuf descriptors that can be used by |
---|
| 1357 | // the VciChbufDma component to tranfer a flow of images: |
---|
| 1358 | // - The SRC chbuf descriptor contain two slots (two user buffers) |
---|
| 1359 | // - The DST chbuf descriptor contains only one slot (frame buffer) |
---|
[254] | 1360 | |
---|
[253] | 1361 | typedef struct fb_cma_channel_s |
---|
| 1362 | { |
---|
[254] | 1363 | paddr_t buf0; // physical address + status for user buffer 0 |
---|
| 1364 | paddr_t buf1; // physical address + status for user buffer 1 |
---|
| 1365 | paddr_t fbf; // physical address + status for frame buffer |
---|
| 1366 | unsigned int length; // buffer length (number of bytes) |
---|
| 1367 | unsigned int padding; // unused (just to hahe channel size = 32 bytes) |
---|
[253] | 1368 | } fb_cma_channel_t; |
---|
| 1369 | |
---|
[254] | 1370 | in_unckdata volatile fb_cma_channel_t _fb_cma_channel[NB_CMA_CHANNELS] __attribute__((aligned(64))); |
---|
| 1371 | in_unckdata volatile paddr_t _fb_cma_desc_paddr[NB_CMA_CHANNELS]; |
---|
[253] | 1372 | |
---|
[218] | 1373 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1374 | // _fb_cma_init() |
---|
[254] | 1375 | // This function uses the _fb_cma_channel[] and _fb_cma_desc_paddr[] arrays, |
---|
| 1376 | // that are both indexed by the channel index. |
---|
| 1377 | // where each entry contains one fb_cma_channel structure (defining two |
---|
| 1378 | // SRC and DST chbuf descriptors), and does four things: |
---|
| 1379 | // |
---|
| 1380 | // 1) computes the physical addresses for the two source user buffers, for |
---|
| 1381 | // the destination frame buffer. It initialises the channel descriptor |
---|
| 1382 | // _fb_cma_channel[i], containing the SRC chbuf descriptor (two buffers), |
---|
| 1383 | // the DST chbuf descriptor (one single frame buffer), and the buffer length. |
---|
| 1384 | // |
---|
| 1385 | // 2) computes the physical address for the channel descriptor and register it |
---|
| 1386 | // in the _fb_cma_desc_paddr[i]. |
---|
| 1387 | // |
---|
| 1388 | // 3) makes a SYNC request to L2 cache for channel descriptor, because the |
---|
| 1389 | // channel descriptor is directly accessed in XRAM by the CMA component. |
---|
| 1390 | // |
---|
| 1391 | // 4) Starts the CMA hardware channel, that will poll the channel descriptor |
---|
| 1392 | // to fransfer an user buffer to the frame buffer as soon as the source |
---|
| 1393 | // user buffer is marked valid. |
---|
| 1394 | // |
---|
[253] | 1395 | // Arguments are: |
---|
| 1396 | // - vbase0 : virtual base address of the first user buffer. |
---|
| 1397 | // - vbase1 : virtual base address of the second user buffer. |
---|
| 1398 | // - length : user buffer size (number of bytes) |
---|
| 1399 | // Returns 0 if success, > 0 if error |
---|
| 1400 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1401 | unsigned int _fb_cma_init( const void* vbase0, |
---|
| 1402 | const void* vbase1, |
---|
| 1403 | unsigned int length ) |
---|
| 1404 | { |
---|
| 1405 | #if NB_CMA_CHANNELS > 0 |
---|
| 1406 | |
---|
[254] | 1407 | unsigned int channel_id; // CMA channel index |
---|
| 1408 | unsigned int user_ptab; // page table virtual address |
---|
| 1409 | unsigned int ko; // unsuccessfull V2P translation |
---|
| 1410 | unsigned int vaddr; // virtual address |
---|
| 1411 | unsigned int flags; // protection flags |
---|
| 1412 | unsigned int ppn; // physical page number |
---|
| 1413 | paddr_t channel_pbase; // physical address of channel descriptor |
---|
[253] | 1414 | |
---|
| 1415 | // get CMA channel index |
---|
| 1416 | channel_id = _get_context_slot(CTX_CMA_ID); |
---|
| 1417 | if ( channel_id >= NB_CMA_CHANNELS ) |
---|
| 1418 | { |
---|
| 1419 | _get_lock(&_tty_put_lock); |
---|
| 1420 | _puts("\n[GIET ERROR] in _fb_cma_init() : CMA channel index too large\n"); |
---|
| 1421 | _release_lock(&_tty_put_lock); |
---|
| 1422 | return 1; |
---|
| 1423 | } |
---|
| 1424 | |
---|
[254] | 1425 | // checking size for channel descriptor |
---|
| 1426 | if ( sizeof(fb_cma_channel_t) != 32 ) |
---|
| 1427 | { |
---|
| 1428 | _get_lock(&_tty_put_lock); |
---|
| 1429 | _puts("\n[GIET ERROR] in _fb_cma_init() : bad fb_cma_channel size\n"); |
---|
| 1430 | _release_lock(&_tty_put_lock); |
---|
| 1431 | return 1; |
---|
| 1432 | } |
---|
| 1433 | |
---|
| 1434 | // checking channel descriptor alignment (32 bytes) |
---|
| 1435 | if ( (unsigned int)(&_fb_cma_channel[channel_id]) & 0x1F ) |
---|
| 1436 | { |
---|
| 1437 | _get_lock(&_tty_put_lock); |
---|
| 1438 | _puts("\n[GIET ERROR] in _fb_cma_init() : bad fb_cma_channel alignment\n"); |
---|
| 1439 | _release_lock(&_tty_put_lock); |
---|
| 1440 | return 1; |
---|
| 1441 | } |
---|
| 1442 | |
---|
| 1443 | // checking user buffer virtual addresses and length alignment |
---|
[253] | 1444 | if ( ((unsigned int)vbase0 & 0x3) || ((unsigned int)vbase1 & 0x3) || (length & 0x3) ) |
---|
| 1445 | { |
---|
| 1446 | _get_lock(&_tty_put_lock); |
---|
| 1447 | _puts("\n[GIET ERROR] in _fb_cma_init() : user buffer not word aligned\n"); |
---|
| 1448 | _release_lock(&_tty_put_lock); |
---|
| 1449 | return 1; |
---|
| 1450 | } |
---|
| 1451 | |
---|
| 1452 | // get page table virtual address |
---|
| 1453 | user_ptab = _get_context_slot(CTX_PTAB_ID); |
---|
| 1454 | |
---|
| 1455 | // compute and register frame buffer physical address |
---|
[254] | 1456 | vaddr = ((unsigned int)&seg_fbf_base); |
---|
| 1457 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
| 1458 | (vaddr >> 12), |
---|
[253] | 1459 | &ppn, |
---|
| 1460 | &flags ); |
---|
| 1461 | if (ko) |
---|
| 1462 | { |
---|
| 1463 | _get_lock(&_tty_put_lock); |
---|
| 1464 | _puts("\n[GIET ERROR] in _fb_cma_init() : frame buffer unmapped\n"); |
---|
| 1465 | _release_lock(&_tty_put_lock); |
---|
| 1466 | return 1; |
---|
| 1467 | } |
---|
[254] | 1468 | _fb_cma_channel[channel_id].fbf = ((paddr_t)ppn << 12) | (vaddr & 0x00000FFF); |
---|
[253] | 1469 | |
---|
| 1470 | // Compute and register first user buffer physical address |
---|
[254] | 1471 | vaddr = (unsigned int)vbase0; |
---|
[253] | 1472 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
[254] | 1473 | (vaddr >> 12), |
---|
[253] | 1474 | &ppn, |
---|
| 1475 | &flags ); |
---|
| 1476 | if (ko) |
---|
| 1477 | { |
---|
| 1478 | _get_lock(&_tty_put_lock); |
---|
| 1479 | _puts("\n[GIET ERROR] in _fb_cma_init() : user buffer 0 unmapped\n"); |
---|
| 1480 | _release_lock(&_tty_put_lock); |
---|
| 1481 | return 1; |
---|
| 1482 | } |
---|
| 1483 | if ((flags & PTE_U) == 0) |
---|
| 1484 | { |
---|
| 1485 | _get_lock(&_tty_put_lock); |
---|
| 1486 | _puts("[GIET ERROR] in _fb_cma_init() : user buffer 0 not in user space\n"); |
---|
| 1487 | _release_lock(&_tty_put_lock); |
---|
| 1488 | return 1; |
---|
| 1489 | } |
---|
[254] | 1490 | _fb_cma_channel[channel_id].buf0 = ((paddr_t)ppn << 12) | (vaddr & 0x00000FFF); |
---|
[253] | 1491 | |
---|
| 1492 | // Compute and register second user buffer physical address |
---|
[254] | 1493 | vaddr = (unsigned int)vbase1; |
---|
[253] | 1494 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
[254] | 1495 | (vaddr >> 12), |
---|
[253] | 1496 | &ppn, |
---|
| 1497 | &flags ); |
---|
| 1498 | if (ko) |
---|
| 1499 | { |
---|
| 1500 | _get_lock(&_tty_put_lock); |
---|
| 1501 | _puts("\n[GIET ERROR] in _fb_cma_init() : user buffer 1 unmapped\n"); |
---|
| 1502 | _release_lock(&_tty_put_lock); |
---|
| 1503 | return 1; |
---|
| 1504 | } |
---|
| 1505 | if ((flags & PTE_U) == 0) |
---|
| 1506 | { |
---|
| 1507 | _get_lock(&_tty_put_lock); |
---|
| 1508 | _puts("[GIET ERROR] in _fb_cma_init() : user buffer 1 not in user space\n"); |
---|
| 1509 | _release_lock(&_tty_put_lock); |
---|
| 1510 | return 1; |
---|
| 1511 | } |
---|
[254] | 1512 | _fb_cma_channel[channel_id].buf1 = ((paddr_t)ppn << 12) | (vaddr & 0x00000FFF); |
---|
[253] | 1513 | |
---|
[254] | 1514 | // register buffer length in channel descriptor |
---|
| 1515 | _fb_cma_channel[channel_id].length = length; |
---|
[253] | 1516 | |
---|
[254] | 1517 | // Compute and register physical adress of the channel descriptor |
---|
| 1518 | vaddr = (unsigned int)(&_fb_cma_channel[channel_id]); |
---|
[253] | 1519 | ko = _v2p_translate( (page_table_t*) user_ptab, |
---|
[254] | 1520 | (vaddr >> 12), |
---|
[253] | 1521 | &ppn, |
---|
| 1522 | &flags ); |
---|
| 1523 | if (ko) |
---|
| 1524 | { |
---|
| 1525 | _get_lock(&_tty_put_lock); |
---|
[254] | 1526 | _puts("\n[GIET ERROR] in _fb_cma_init() : channel descriptor unmapped\n"); |
---|
[253] | 1527 | _release_lock(&_tty_put_lock); |
---|
| 1528 | return 1; |
---|
| 1529 | } |
---|
[254] | 1530 | channel_pbase = (((paddr_t)ppn) << 12) | (vaddr & 0x00000FFF); |
---|
| 1531 | _fb_cma_desc_paddr[channel_id] = channel_pbase; |
---|
[253] | 1532 | |
---|
[254] | 1533 | #if GIET_DEBUG_CMA_DRIVER |
---|
| 1534 | _puts("\n"); |
---|
| 1535 | _puts("- fbf pbase = "); |
---|
| 1536 | _putl( _fb_cma_channel[channel_id].fbf ); |
---|
| 1537 | _puts("\n"); |
---|
| 1538 | _puts("- buf0 pbase = "); |
---|
| 1539 | _putl( _fb_cma_channel[channel_id].buf0 ); |
---|
| 1540 | _puts("\n"); |
---|
| 1541 | _puts("- buf1 pbase = "); |
---|
| 1542 | _putl( _fb_cma_channel[channel_id].buf1 ); |
---|
| 1543 | _puts("\n"); |
---|
| 1544 | _puts("- channel pbase = "); |
---|
| 1545 | _putl( channel_pbase ); |
---|
| 1546 | _puts("\n"); |
---|
| 1547 | #endif |
---|
| 1548 | |
---|
| 1549 | // SYNC request for channel descriptor |
---|
| 1550 | _memc_sync( channel_pbase, 32 ); |
---|
| 1551 | |
---|
[253] | 1552 | // CMA channel activation |
---|
| 1553 | unsigned int* cma_vbase = (unsigned int *)&seg_cma_base; |
---|
| 1554 | unsigned int offset = channel_id * CHBUF_CHANNEL_SPAN; |
---|
| 1555 | |
---|
[254] | 1556 | cma_vbase[offset + CHBUF_SRC_DESC] = (unsigned int)(channel_pbase & 0xFFFFFFFF); |
---|
| 1557 | cma_vbase[offset + CHBUF_SRC_EXT] = (unsigned int)(channel_pbase >> 32); |
---|
[253] | 1558 | cma_vbase[offset + CHBUF_SRC_NBUFS] = 2; |
---|
[254] | 1559 | cma_vbase[offset + CHBUF_DST_DESC] = (unsigned int)(channel_pbase & 0xFFFFFFFF) + 16; |
---|
| 1560 | cma_vbase[offset + CHBUF_DST_EXT] = (unsigned int)(channel_pbase >> 32); |
---|
[253] | 1561 | cma_vbase[offset + CHBUF_DST_NBUFS] = 1; |
---|
| 1562 | cma_vbase[offset + CHBUF_BUF_SIZE] = length; |
---|
| 1563 | cma_vbase[offset + CHBUF_PERIOD] = 300; |
---|
| 1564 | cma_vbase[offset + CHBUF_RUN] = 1; |
---|
| 1565 | |
---|
| 1566 | return 0; |
---|
| 1567 | |
---|
| 1568 | #else |
---|
| 1569 | |
---|
| 1570 | _get_lock(&_tty_put_lock); |
---|
| 1571 | _puts("\n[GIET ERROR] in _fb_cma_init() : no CMA channel allocated\n"); |
---|
| 1572 | _release_lock(&_tty_put_lock); |
---|
| 1573 | |
---|
| 1574 | return 1; |
---|
| 1575 | #endif |
---|
| 1576 | } |
---|
| 1577 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1578 | // _fb_cma_write() |
---|
[254] | 1579 | // This function makes a SYNC request for the source user buffer. |
---|
| 1580 | // Then it updates the status of the SRC and DST chbuf descriptors, to allow |
---|
| 1581 | // the CMA component to transfer the source user buffer buffer to the destination |
---|
| 1582 | // frame buffer, and makes a SYNC request for the channel descriptor. |
---|
| 1583 | // |
---|
[253] | 1584 | // - buffer_id : user buffer index (0 => buf0 / not 0 => buf1) |
---|
| 1585 | // Returns 0 if success, > 0 if error |
---|
| 1586 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1587 | unsigned int _fb_cma_write( unsigned int buffer_id ) |
---|
| 1588 | { |
---|
| 1589 | #if NB_CMA_CHANNELS > 0 |
---|
| 1590 | |
---|
[254] | 1591 | paddr_t buf_paddr; |
---|
| 1592 | unsigned int buf_length; |
---|
| 1593 | |
---|
[253] | 1594 | // get CMA channel index |
---|
| 1595 | unsigned int channel_id = _get_context_slot(CTX_CMA_ID); |
---|
[254] | 1596 | |
---|
| 1597 | // SYNC request for the source user buffer |
---|
| 1598 | if ( buffer_id == 0 ) buf_paddr = _fb_cma_channel[channel_id].buf0; |
---|
| 1599 | else buf_paddr = _fb_cma_channel[channel_id].buf1; |
---|
| 1600 | buf_length = _fb_cma_channel[channel_id].length; |
---|
| 1601 | _memc_sync( buf_paddr, buf_length ); |
---|
| 1602 | |
---|
[253] | 1603 | // set SRC full |
---|
| 1604 | if ( buffer_id == 0 ) |
---|
[254] | 1605 | _fb_cma_channel[channel_id].buf0 = buf_paddr | 0x8000000000000000ULL; |
---|
[253] | 1606 | else |
---|
[254] | 1607 | _fb_cma_channel[channel_id].buf1 = buf_paddr | 0x8000000000000000ULL; |
---|
| 1608 | |
---|
[253] | 1609 | // set DST empty |
---|
| 1610 | _fb_cma_channel[channel_id].fbf = _fb_cma_channel[channel_id].fbf |
---|
| 1611 | & 0x7FFFFFFFFFFFFFFFULL; |
---|
[254] | 1612 | |
---|
| 1613 | // SYNC request for the channel descriptor |
---|
| 1614 | buf_paddr = _fb_cma_desc_paddr[channel_id]; |
---|
| 1615 | buf_length = 32; |
---|
| 1616 | _memc_sync( buf_paddr, buf_length ); |
---|
| 1617 | |
---|
[253] | 1618 | return 0; |
---|
| 1619 | |
---|
| 1620 | #else |
---|
| 1621 | |
---|
| 1622 | _get_lock(&_tty_put_lock); |
---|
| 1623 | _puts("\n[GIET ERROR] in _fb_cma_channel() : no CMA channel allocated\n"); |
---|
| 1624 | _release_lock(&_tty_put_lock); |
---|
| 1625 | return 1; |
---|
| 1626 | |
---|
| 1627 | #endif |
---|
| 1628 | } |
---|
| 1629 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1630 | // _fb_cma_stop() |
---|
| 1631 | // This function desactivates the CMA channel allocated to the calling task. |
---|
| 1632 | // Returns 0 if success, > 0 if error |
---|
| 1633 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1634 | unsigned int _fb_cma_stop( unsigned int buffer_id ) |
---|
| 1635 | { |
---|
| 1636 | #if NB_CMA_CHANNELS > 0 |
---|
| 1637 | |
---|
| 1638 | // get CMA channel allocated |
---|
| 1639 | unsigned int channel_id = _get_context_slot(CTX_CMA_ID); |
---|
[254] | 1640 | |
---|
[253] | 1641 | // CMA channel desactivation |
---|
| 1642 | unsigned int* cma_vbase = (unsigned int *)&seg_cma_base; |
---|
| 1643 | unsigned int offset = channel_id * CHBUF_CHANNEL_SPAN; |
---|
| 1644 | cma_vbase[offset + CHBUF_RUN] = 0; |
---|
| 1645 | return 0; |
---|
| 1646 | |
---|
| 1647 | #else |
---|
| 1648 | |
---|
| 1649 | _get_lock(&_tty_put_lock); |
---|
| 1650 | _puts("\n[GIET ERROR] in _fb_cma_stop() : no CMA channel allocated\n"); |
---|
| 1651 | _release_lock(&_tty_put_lock); |
---|
| 1652 | return 1; |
---|
| 1653 | |
---|
| 1654 | #endif |
---|
| 1655 | } |
---|
| 1656 | |
---|
| 1657 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[228] | 1658 | // VciMultiNic driver |
---|
[218] | 1659 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1660 | // The VciMultiNic device can be accessed directly by software with memcpy(), |
---|
[253] | 1661 | // or it can be accessed through a multi-channels CMA component: |
---|
[218] | 1662 | // |
---|
| 1663 | // The '_nic_sync_write' and '_nic_sync_read' functions use a memcpy strategy to |
---|
| 1664 | // implement the transfer between a data buffer (user space) and the NIC |
---|
| 1665 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
| 1666 | // |
---|
[253] | 1667 | // The _nic_cma_init() and _nic_cma_stop() functions use the VciChbufDma component |
---|
| 1668 | // to transfer a flow of packets from the NIC RX hard chbuf (two containers) |
---|
| 1669 | // to an user RX chbuf (two containers), and to transfer another flow of packets |
---|
| 1670 | // from an user TX chbuf (two containers) to the NIC TX chbuf (two containers). |
---|
| 1671 | // One NIC channel and two CMA channels must be allocated to the task |
---|
| 1672 | // in the mapping_info data structure. |
---|
[218] | 1673 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[204] | 1674 | |
---|
[218] | 1675 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1676 | // _nic_sync_write() |
---|
| 1677 | // Transfer data from an memory buffer to the NIC device using a memcpy. |
---|
| 1678 | // - buffer : base address of the memory buffer. |
---|
| 1679 | // - length : number of bytes to be transfered. |
---|
| 1680 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1681 | unsigned int _nic_sync_write( const void* buffer, |
---|
[238] | 1682 | unsigned int length ) |
---|
| 1683 | { |
---|
[253] | 1684 | // To be defined |
---|
| 1685 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
| 1686 | // memcpy((void *) nic_address, (void *) buffer, length); |
---|
[218] | 1687 | return 0; |
---|
| 1688 | } |
---|
| 1689 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1690 | // _nic_sync_read() |
---|
| 1691 | // Transfer data from the NIC device to a memory buffer using a memcpy. |
---|
| 1692 | // - buffer : base address of the memory buffer. |
---|
| 1693 | // - length : number of bytes to be transfered. |
---|
| 1694 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1695 | unsigned int _nic_sync_read( const void* buffer, |
---|
| 1696 | unsigned int length ) |
---|
| 1697 | { |
---|
| 1698 | // To be defined |
---|
| 1699 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
| 1700 | // memcpy((void *) buffer, (void *) nic_address, length); |
---|
[218] | 1701 | return 0; |
---|
| 1702 | } |
---|
| 1703 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1704 | // _nic_cma_rx_init() |
---|
[218] | 1705 | // Returns 0 if success, > 0 if error. |
---|
| 1706 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1707 | unsigned int _nic_cma_rx_init( const void* buf0, |
---|
| 1708 | const void* buf1, |
---|
| 1709 | unsigned int length ) |
---|
| 1710 | { |
---|
| 1711 | // to be defined |
---|
| 1712 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
| 1713 | return 0; |
---|
[218] | 1714 | } |
---|
| 1715 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1716 | // _nic_cma_tx_init() |
---|
[218] | 1717 | // Returns 0 if success, > 0 if error. |
---|
| 1718 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1719 | unsigned int _nic_cma_tx_init( const void* buf0, |
---|
| 1720 | const void* buf1, |
---|
| 1721 | unsigned int length ) |
---|
| 1722 | { |
---|
| 1723 | // to be defined |
---|
| 1724 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
| 1725 | return 0; |
---|
| 1726 | }////////////////////////////////////////////////////////////////////////////////// |
---|
| 1727 | // _nic_cma_stop() |
---|
| 1728 | // Returns 0 if success, > 0 if error. |
---|
[218] | 1729 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1730 | unsigned int _nic_cma_stop() |
---|
[238] | 1731 | { |
---|
[253] | 1732 | // to be defined |
---|
| 1733 | // unsigned char* nic_address = (unsigned char *) &seg_nic_base; |
---|
| 1734 | return 0; |
---|
[158] | 1735 | } |
---|
| 1736 | |
---|
[253] | 1737 | |
---|
[249] | 1738 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1739 | // VciMemCache driver |
---|
| 1740 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1741 | // The VciMemCache device can be accessed through a configuration interface. |
---|
| 1742 | // as a set of uncached, memory mapped registers. |
---|
[232] | 1743 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[253] | 1744 | // The (virtual) base address of the associated segment is: |
---|
| 1745 | // |
---|
| 1746 | // mmc_address = seg_mmc_base + cluster_id * vseg_cluster_increment |
---|
| 1747 | // |
---|
| 1748 | //////////////////////////////////////////////////////////////////////////////// |
---|
[249] | 1749 | |
---|
| 1750 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 1751 | // _memc_inval() |
---|
[254] | 1752 | // This function invalidates all cache lines covering a memory buffer defined |
---|
[249] | 1753 | // by the physical base address, and the length. |
---|
| 1754 | // The buffer address MSB are used to compute the cluster index. |
---|
| 1755 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 1756 | void _memc_inval( paddr_t buf_paddr, |
---|
| 1757 | unsigned int buf_length ) |
---|
| 1758 | { |
---|
| 1759 | unsigned int cluster_id = (unsigned int)((buf_paddr>>32)/(256/NB_CLUSTERS)); |
---|
| 1760 | |
---|
[253] | 1761 | unsigned int * mmc_address = (unsigned int *) ((unsigned int)&seg_mmc_base + |
---|
| 1762 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
[249] | 1763 | |
---|
| 1764 | // get the lock protecting exclusive access to MEMC |
---|
| 1765 | while ( mmc_address[MEMC_LOCK] ) { asm volatile("nop"); } |
---|
| 1766 | |
---|
| 1767 | // write inval arguments |
---|
| 1768 | mmc_address[MEMC_ADDR_LO] = (unsigned int)buf_paddr; |
---|
| 1769 | mmc_address[MEMC_ADDR_HI] = (unsigned int)(buf_paddr>>32); |
---|
| 1770 | mmc_address[MEMC_BUF_LENGTH] = buf_length; |
---|
| 1771 | mmc_address[MEMC_CMD_TYPE] = MEMC_CMD_INVAL; |
---|
| 1772 | |
---|
| 1773 | // release the lock protecting MEMC |
---|
| 1774 | mmc_address[MEMC_LOCK] = 0; |
---|
| 1775 | } |
---|
[254] | 1776 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 1777 | // _memc_sync() |
---|
| 1778 | // This function copies to external RAM all cache lines covering a memory buffer |
---|
| 1779 | // defined by the physical base address, and the length, if they are dirty. |
---|
| 1780 | // The buffer address MSB are used to compute the cluster index. |
---|
| 1781 | /////////////////////////////////////////////////////////////////////////////////// |
---|
| 1782 | void _memc_sync( paddr_t buf_paddr, |
---|
| 1783 | unsigned int buf_length ) |
---|
| 1784 | { |
---|
| 1785 | unsigned int cluster_id = (unsigned int)((buf_paddr>>32)/(256/NB_CLUSTERS)); |
---|
[253] | 1786 | |
---|
[254] | 1787 | unsigned int * mmc_address = (unsigned int *) ((unsigned int)&seg_mmc_base + |
---|
| 1788 | (cluster_id * (unsigned int)&vseg_cluster_increment)); |
---|
| 1789 | |
---|
| 1790 | // get the lock protecting exclusive access to MEMC |
---|
| 1791 | while ( mmc_address[MEMC_LOCK] ) { asm volatile("nop"); } |
---|
| 1792 | |
---|
| 1793 | // write inval arguments |
---|
| 1794 | mmc_address[MEMC_ADDR_LO] = (unsigned int)buf_paddr; |
---|
| 1795 | mmc_address[MEMC_ADDR_HI] = (unsigned int)(buf_paddr>>32); |
---|
| 1796 | mmc_address[MEMC_BUF_LENGTH] = buf_length; |
---|
| 1797 | mmc_address[MEMC_CMD_TYPE] = MEMC_CMD_SYNC; |
---|
| 1798 | |
---|
| 1799 | // release the lock protecting MEMC |
---|
| 1800 | mmc_address[MEMC_LOCK] = 0; |
---|
| 1801 | } |
---|
| 1802 | |
---|
[249] | 1803 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[232] | 1804 | // _heap_info() |
---|
| 1805 | // This function returns the information associated to a heap (size and vaddr) |
---|
[238] | 1806 | // It uses the global task index (CTX_GTID_ID, unique for each giet task) and the |
---|
| 1807 | // vspace index (CTX_VSID_ID) defined in the task context. |
---|
[232] | 1808 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[238] | 1809 | unsigned int _heap_info( unsigned int* vaddr, |
---|
| 1810 | unsigned int* size ) |
---|
| 1811 | { |
---|
[232] | 1812 | mapping_header_t * header = (mapping_header_t *) (&seg_mapping_base); |
---|
| 1813 | mapping_task_t * tasks = _get_task_base(header); |
---|
| 1814 | mapping_vobj_t * vobjs = _get_vobj_base(header); |
---|
| 1815 | mapping_vspace_t * vspaces = _get_vspace_base(header); |
---|
[238] | 1816 | |
---|
| 1817 | unsigned int taskid = _get_context_slot(CTX_GTID_ID); |
---|
| 1818 | unsigned int vspaceid = _get_context_slot(CTX_VSID_ID); |
---|
| 1819 | |
---|
[232] | 1820 | int heap_local_vobjid = tasks[taskid].heap_vobjid; |
---|
[238] | 1821 | if (heap_local_vobjid != -1) |
---|
| 1822 | { |
---|
[232] | 1823 | unsigned int vobjheapid = heap_local_vobjid + vspaces[vspaceid].vobj_offset; |
---|
| 1824 | *vaddr = vobjs[vobjheapid].vaddr; |
---|
| 1825 | *size = vobjs[vobjheapid].length; |
---|
| 1826 | return 0; |
---|
| 1827 | } |
---|
[238] | 1828 | else |
---|
| 1829 | { |
---|
[232] | 1830 | *vaddr = 0; |
---|
| 1831 | *size = 0; |
---|
| 1832 | return 0; |
---|
| 1833 | } |
---|
| 1834 | } |
---|
| 1835 | |
---|
[255] | 1836 | |
---|
| 1837 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 1838 | // _sim_helper_access() |
---|
| 1839 | // Accesses the Simulation Helper Component |
---|
| 1840 | // If the access is on a writable register (except SIMHELPER_PAUSE_SIM), |
---|
| 1841 | // the function should never return since the simulation will stop before |
---|
| 1842 | // If the access is on a readable register, returns 0 on success, 1 on failure, |
---|
| 1843 | // and writes the return value at address retval |
---|
| 1844 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 1845 | unsigned int _sim_helper_access(unsigned int register_index, |
---|
| 1846 | unsigned int value, |
---|
| 1847 | unsigned int * retval) { |
---|
| 1848 | unsigned int * sim_helper_address = (unsigned int *) &seg_sim_base; |
---|
| 1849 | |
---|
| 1850 | if (register_index == SIMHELPER_SC_STOP || |
---|
| 1851 | register_index == SIMHELPER_END_WITH_RETVAL || |
---|
| 1852 | register_index == SIMHELPER_EXCEPT_WITH_VAL || |
---|
| 1853 | register_index == SIMHELPER_PAUSE_SIM || |
---|
| 1854 | register_index == SIMHELPER_SIGINT) { |
---|
| 1855 | sim_helper_address[register_index] = value; |
---|
| 1856 | } |
---|
| 1857 | else if (register_index == SIMHELPER_CYCLES) { |
---|
| 1858 | *retval = sim_helper_address[register_index]; |
---|
| 1859 | } |
---|
| 1860 | else { |
---|
| 1861 | _get_lock(&_tty_put_lock); |
---|
| 1862 | _puts("\n[GIET ERROR] in _sim_helper_access() : access to unmapped register\n"); |
---|
| 1863 | _release_lock(&_tty_put_lock); |
---|
| 1864 | return -1; |
---|
| 1865 | } |
---|
| 1866 | |
---|
| 1867 | return 0; |
---|
| 1868 | } |
---|
| 1869 | |
---|
| 1870 | |
---|
| 1871 | |
---|
[228] | 1872 | // Local Variables: |
---|
| 1873 | // tab-width: 4 |
---|
| 1874 | // c-basic-offset: 4 |
---|
| 1875 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
| 1876 | // indent-tabs-mode: nil |
---|
| 1877 | // End: |
---|
| 1878 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
| 1879 | |
---|