1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
2 | // File : drivers.c |
---|
3 | // Date : 01/04/2012 |
---|
4 | // Author : alain greiner |
---|
5 | // Copyright (c) UPMC-LIP6 |
---|
6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
7 | // The drivers.c and drivers.h files are part ot the GIET-VM nano kernel. |
---|
8 | // They contains the drivers for the peripherals available in the SoCLib library: |
---|
9 | // - vci_multi_tty |
---|
10 | // - vci_multi_timer |
---|
11 | // - vci_multi_dma |
---|
12 | // - vci_multi_icu |
---|
13 | // - vci_xicu & vci_multi_icu |
---|
14 | // - vci_gcd |
---|
15 | // - vci_frame_buffer |
---|
16 | // - vci_block_device |
---|
17 | // |
---|
18 | // The following global parameters must be defined in the giet_config.h file: |
---|
19 | // - CLUSTER_SIZE |
---|
20 | // - NB_CLUSTERS |
---|
21 | // - NB_PROCS_MAX |
---|
22 | // - NB_TIMERS_MAX |
---|
23 | // - NB_DMAS_MAX |
---|
24 | // - NB_TTYS |
---|
25 | // |
---|
26 | // The following virtual base addresses must be defined in the giet_vsegs.ld file: |
---|
27 | // - seg_icu_base |
---|
28 | // - seg_tim_base |
---|
29 | // - seg_tty_base |
---|
30 | // - seg_gcd_base |
---|
31 | // - seg_dma_base |
---|
32 | // - seg_fbf_base |
---|
33 | // - seg_ioc_base |
---|
34 | // - seg_nic_base |
---|
35 | // As some peripherals can be replicated in the clusters (ICU, TIMER, DMA) |
---|
36 | // These addresses must be completed by an offset depending on the cluster index |
---|
37 | // full_base_address = seg_***_base + cluster_id * CLUSTER_SIZE |
---|
38 | /////////////////////////////////////////////////////////////////////////////////// |
---|
39 | |
---|
40 | #include <vm_handler.h> |
---|
41 | #include <sys_handler.h> |
---|
42 | #include <giet_config.h> |
---|
43 | #include <drivers.h> |
---|
44 | #include <common.h> |
---|
45 | #include <hwr_mapping.h> |
---|
46 | #include <mips32_registers.h> |
---|
47 | #include <ctx_handler.h> |
---|
48 | |
---|
49 | #if !defined(NB_CLUSTERS) |
---|
50 | # error: You must define NB_CLUSTERS in the configs file |
---|
51 | #endif |
---|
52 | |
---|
53 | #if !defined(NB_PROCS_MAX) |
---|
54 | # error: You must define NB_PROCS_MAX in the configs file |
---|
55 | #endif |
---|
56 | |
---|
57 | #if (NB_PROCS_MAX > 8) |
---|
58 | # error: NB_PROCS_MAX cannot be larger than 8! |
---|
59 | #endif |
---|
60 | |
---|
61 | #if !defined(CLUSTER_SIZE) |
---|
62 | # error: You must define CLUSTER_SIZE in the configs file |
---|
63 | #endif |
---|
64 | |
---|
65 | #if !defined(NB_TTYS) |
---|
66 | # error: You must define NB_TTYS in the configs file |
---|
67 | #endif |
---|
68 | |
---|
69 | #if (NB_TTYS < 1) |
---|
70 | # error: NB_TTYS cannot be smaller than 1! |
---|
71 | #endif |
---|
72 | |
---|
73 | #if !defined(NB_DMAS_MAX) |
---|
74 | #define NB_DMAS_MAX 0 |
---|
75 | #endif |
---|
76 | |
---|
77 | #if !defined(NB_TIMERS_MAX) |
---|
78 | #define NB_TIMERS_MAX 0 |
---|
79 | #endif |
---|
80 | |
---|
81 | #if ( (NB_TIMERS_MAX) > 32 ) |
---|
82 | # error: NB_TIMERS_MAX + NB_PROCS_MAX cannot be larger than 32 |
---|
83 | #endif |
---|
84 | |
---|
85 | #if !defined(NB_IOCS) |
---|
86 | # error: You must define NB_IOCS in the configs file |
---|
87 | #endif |
---|
88 | |
---|
89 | #if ( NB_IOCS > 1 ) |
---|
90 | # error: NB_IOCS cannot be larger than 1 |
---|
91 | #endif |
---|
92 | |
---|
93 | #if !defined( USE_XICU ) |
---|
94 | # error: You must define USE_XICU in the configs file |
---|
95 | #endif |
---|
96 | |
---|
97 | #if !defined( IOMMU_ACTIVE ) |
---|
98 | # error: You must define IOMMU_ACTIVE in the configs file |
---|
99 | #endif |
---|
100 | |
---|
101 | |
---|
102 | #define in_unckdata __attribute__((section (".unckdata"))) |
---|
103 | |
---|
104 | ////////////////////////////////////////////////////////////////////////////// |
---|
105 | // Timers driver |
---|
106 | ////////////////////////////////////////////////////////////////////////////// |
---|
107 | // The timers can be implemented in a vci_timer component or in a vci_xicu |
---|
108 | // component (depending on the USE_XICU parameter). |
---|
109 | // There is one timer (or xicu) component per cluster. |
---|
110 | // There is two types of timers: |
---|
111 | // - "system" timers : one per processor, used for context switch. |
---|
112 | // local_id in [0, NB_PROCS_MAX-1], |
---|
113 | // - "user" timers : requested by the task in the mapping_info data structure. |
---|
114 | // For each user timer, the timer_id is stored in the context of the task. |
---|
115 | // The global index is cluster_id * (NB_PROCS_MAX+NB_TIMERS_MAX) + local_id |
---|
116 | ////////////////////////////////////////////////////////////////////////////// |
---|
117 | |
---|
118 | // User Timer signaling variables |
---|
119 | |
---|
120 | #if (NB_TIMERS_MAX > 0) |
---|
121 | in_unckdata volatile unsigned char _user_timer_event[NB_CLUSTERS * NB_TIMERS_MAX] |
---|
122 | = { [0 ... ((NB_CLUSTERS * NB_TIMERS_MAX) - 1)] = 0 }; |
---|
123 | #endif |
---|
124 | |
---|
125 | ////////////////////////////////////////////////////////////////////////////// |
---|
126 | // _timer_start() |
---|
127 | // This function activates a timer in the vci_timer (or vci_xicu) component |
---|
128 | // by writing in the proper register the period value. |
---|
129 | // It can be used by both the kernel to initialise a "system" timer, |
---|
130 | // or by a task (through a system call) to configure an "user" timer. |
---|
131 | // Returns 0 if success, > 0 if error. |
---|
132 | ////////////////////////////////////////////////////////////////////////////// |
---|
133 | unsigned int _timer_start(unsigned int cluster_id, unsigned int local_id, unsigned int period) { |
---|
134 | // parameters checking |
---|
135 | if (cluster_id >= NB_CLUSTERS) { |
---|
136 | return 1; |
---|
137 | } |
---|
138 | if (local_id >= NB_TIMERS_MAX) { |
---|
139 | return 2; |
---|
140 | } |
---|
141 | |
---|
142 | #if USE_XICU |
---|
143 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_icu_base + (cluster_id * CLUSTER_SIZE)); |
---|
144 | |
---|
145 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = period; |
---|
146 | #else |
---|
147 | unsigned int* timer_address = (unsigned int *) ((char *) &seg_tim_base + (cluster_id * CLUSTER_SIZE)); |
---|
148 | |
---|
149 | timer_address[local_id * TIMER_SPAN + TIMER_PERIOD] = period; |
---|
150 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0x3; |
---|
151 | #endif |
---|
152 | return 0; |
---|
153 | } |
---|
154 | |
---|
155 | |
---|
156 | ////////////////////////////////////////////////////////////////////////////// |
---|
157 | // _timer_stop() |
---|
158 | // This function desactivates a timer in the vci_timer (or vci_xicu) component |
---|
159 | // by writing in the proper register. |
---|
160 | // Returns 0 if success, > 0 if error. |
---|
161 | ////////////////////////////////////////////////////////////////////////////// |
---|
162 | unsigned int _timer_stop(unsigned int cluster_id, unsigned int local_id) { |
---|
163 | // parameters checking |
---|
164 | if (cluster_id >= NB_CLUSTERS) { |
---|
165 | return 1; |
---|
166 | } |
---|
167 | if (local_id >= NB_TIMERS_MAX) { |
---|
168 | return 2; |
---|
169 | } |
---|
170 | |
---|
171 | #if USE_XICU |
---|
172 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_icu_base + (cluster_id * CLUSTER_SIZE)); |
---|
173 | |
---|
174 | timer_address[XICU_REG(XICU_PTI_PER, local_id)] = 0; |
---|
175 | #else |
---|
176 | unsigned int* timer_address = (unsigned int *) ((char *) &seg_tim_base + (cluster_id * CLUSTER_SIZE)); |
---|
177 | timer_address[local_id * TIMER_SPAN + TIMER_MODE] = 0; |
---|
178 | #endif |
---|
179 | return 0; |
---|
180 | } |
---|
181 | |
---|
182 | |
---|
183 | ////////////////////////////////////////////////////////////////////////////// |
---|
184 | // _timer_reset_irq() |
---|
185 | // This function acknowlegge a timer interrupt in the vci_timer (or vci_xicu) |
---|
186 | // component by reading/writing in the proper register. |
---|
187 | // It can be used by both the isr_switch() for a "system" timer, |
---|
188 | // or by the _isr_timer() for an "user" timer. |
---|
189 | // Returns 0 if success, > 0 if error. |
---|
190 | ////////////////////////////////////////////////////////////////////////////// |
---|
191 | unsigned int _timer_reset_irq(unsigned int cluster_id, unsigned int local_id) { |
---|
192 | // parameters checking |
---|
193 | if (cluster_id >= NB_CLUSTERS) { |
---|
194 | return 1; |
---|
195 | } |
---|
196 | if (local_id >= NB_TIMERS_MAX) { |
---|
197 | return 2; |
---|
198 | } |
---|
199 | |
---|
200 | #if USE_XICU |
---|
201 | unsigned int * timer_address = (unsigned int *) ((char *) &seg_icu_base + |
---|
202 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
---|
203 | |
---|
204 | unsigned int bloup = timer_address[XICU_REG(XICU_PTI_ACK, local_id)]; |
---|
205 | bloup++; // to avoid a warning |
---|
206 | #else |
---|
207 | unsigned int * timer_address = (unsigned int *)((char *) &seg_tim_base + |
---|
208 | (cluster_id * CLUSTER_SIZE)); |
---|
209 | |
---|
210 | timer_address[local_id * TIMER_SPAN + TIMER_RESETIRQ] = 0; |
---|
211 | #endif |
---|
212 | |
---|
213 | return 0; |
---|
214 | } |
---|
215 | |
---|
216 | |
---|
217 | ///////////////////////////////////////////////////////////////////////////////// |
---|
218 | // VciMultiTty driver |
---|
219 | ///////////////////////////////////////////////////////////////////////////////// |
---|
220 | // There is only one multi_tty controler in the architecture. |
---|
221 | // The total number of TTYs is defined by the configuration parameter NB_TTYS. |
---|
222 | // The "system" terminal is TTY[0]. |
---|
223 | // The "user" TTYs are allocated to applications by the GIET in the boot phase, |
---|
224 | // as defined in the mapping_info data structure. The corresponding tty_id must |
---|
225 | // be stored in the context of the task by the boot code. |
---|
226 | // The TTY address is : seg_tty_base + tty_id*TTY_SPAN |
---|
227 | ///////////////////////////////////////////////////////////////////////////////// |
---|
228 | |
---|
229 | // TTY variables |
---|
230 | in_unckdata volatile unsigned char _tty_get_buf[NB_TTYS]; |
---|
231 | in_unckdata volatile unsigned char _tty_get_full[NB_TTYS] = { [0 ... NB_TTYS - 1] = 0 }; |
---|
232 | in_unckdata unsigned int _tty_put_lock = 0; // protect kernel TTY[0] |
---|
233 | |
---|
234 | //////////////////////////////////////////////////////////////////////////////// |
---|
235 | // _tty_error() |
---|
236 | //////////////////////////////////////////////////////////////////////////////// |
---|
237 | void _tty_error(unsigned int tty_id, unsigned int task_id) { |
---|
238 | unsigned int proc_id = _procid(); |
---|
239 | |
---|
240 | _get_lock(&_tty_put_lock); |
---|
241 | if (tty_id == 0xFFFFFFFF) { |
---|
242 | _puts("\n[GIET ERROR] no TTY assigned to the task "); |
---|
243 | } |
---|
244 | else { |
---|
245 | _puts("\n[GIET ERROR] TTY index too large for task "); |
---|
246 | } |
---|
247 | _putd(task_id); |
---|
248 | _puts(" on processor "); |
---|
249 | _putd(proc_id); |
---|
250 | _puts("\n"); |
---|
251 | _release_lock(&_tty_put_lock); |
---|
252 | } |
---|
253 | |
---|
254 | |
---|
255 | ///////////////////////////////////////////////////////////////////////////////// |
---|
256 | // _tty_write() |
---|
257 | // Write one or several characters directly from a fixed-length user buffer to |
---|
258 | // the TTY_WRITE register of the TTY controler. |
---|
259 | // It doesn't use the TTY_PUT_IRQ interrupt and the associated kernel buffer. |
---|
260 | // This is a non blocking call: it tests the TTY_STATUS register, and stops |
---|
261 | // the transfer as soon as the TTY_STATUS[WRITE] bit is set. |
---|
262 | // The function returns the number of characters that have been written. |
---|
263 | ///////////////////////////////////////////////////////////////////////////////// |
---|
264 | unsigned int _tty_write(const char * buffer, unsigned int length) { |
---|
265 | unsigned int nwritten; |
---|
266 | unsigned int task_id = _get_current_task_id(); |
---|
267 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
268 | |
---|
269 | if (tty_id >= NB_TTYS) { |
---|
270 | _tty_error(tty_id , task_id); |
---|
271 | return 0; |
---|
272 | } |
---|
273 | |
---|
274 | unsigned int * tty_address = (unsigned int *) &seg_tty_base; |
---|
275 | |
---|
276 | for (nwritten = 0; nwritten < length; nwritten++) { |
---|
277 | // check tty's status |
---|
278 | if ((tty_address[tty_id * TTY_SPAN + TTY_STATUS] & 0x2) == 0x2) { |
---|
279 | break; |
---|
280 | } |
---|
281 | else { |
---|
282 | // write character |
---|
283 | tty_address[tty_id * TTY_SPAN + TTY_WRITE] = (unsigned int) buffer[nwritten]; |
---|
284 | } |
---|
285 | } |
---|
286 | return nwritten; |
---|
287 | } |
---|
288 | |
---|
289 | |
---|
290 | ////////////////////////////////////////////////////////////////////////////// |
---|
291 | // _tty_read() |
---|
292 | // This non-blocking function uses the TTY_GET_IRQ[tty_id] interrupt and |
---|
293 | // the associated kernel buffer, that has been written by the ISR. |
---|
294 | // It get the TTY terminal index from the context of the current task. |
---|
295 | // It fetches one single character from the _tty_get_buf[tty_id] kernel |
---|
296 | // buffer, writes this character to the user buffer, and resets the |
---|
297 | // _tty_get_full[tty_id] buffer. |
---|
298 | // The length argument is not used. |
---|
299 | // Returns 0 if the kernel buffer is empty, 1 if the buffer is full. |
---|
300 | ////////////////////////////////////////////////////////////////////////////// |
---|
301 | unsigned int _tty_read(char * buffer, unsigned int length) { |
---|
302 | unsigned int task_id = _get_current_task_id(); |
---|
303 | unsigned int tty_id = _get_context_slot(task_id, CTX_TTY_ID); |
---|
304 | |
---|
305 | if (tty_id >= NB_TTYS) { |
---|
306 | _tty_error(tty_id, task_id); |
---|
307 | return 0; |
---|
308 | } |
---|
309 | |
---|
310 | if (_tty_get_full[tty_id] == 0) { |
---|
311 | return 0; |
---|
312 | } |
---|
313 | else { |
---|
314 | *buffer = _tty_get_buf[tty_id]; |
---|
315 | _tty_get_full[tty_id] = 0; |
---|
316 | return 1; |
---|
317 | } |
---|
318 | } |
---|
319 | |
---|
320 | |
---|
321 | //////////////////////////////////////////////////////////////////////////////// |
---|
322 | // _tty_get_char() |
---|
323 | // This function is used by the _isr_tty to read a character in the TTY |
---|
324 | // terminal defined by the tty_id argument. The character is stored |
---|
325 | // in requested buffer, and the IRQ is acknowledged. |
---|
326 | // Returns 0 if success, 1 if tty_id too large. |
---|
327 | //////////////////////////////////////////////////////////////////////////////// |
---|
328 | unsigned int _tty_get_char(unsigned int tty_id, unsigned char * buffer) { |
---|
329 | // checking argument |
---|
330 | if (tty_id >= NB_TTYS) { |
---|
331 | return 1; |
---|
332 | } |
---|
333 | |
---|
334 | // compute terminal base address |
---|
335 | unsigned int * tty_address = (unsigned int *) &seg_tty_base; |
---|
336 | |
---|
337 | *buffer = (unsigned char) tty_address[tty_id * TTY_SPAN + TTY_READ]; |
---|
338 | return 0; |
---|
339 | } |
---|
340 | |
---|
341 | |
---|
342 | //////////////////////////////////////////////////////////////////////////////// |
---|
343 | // VciMultiIcu and VciXicu drivers |
---|
344 | //////////////////////////////////////////////////////////////////////////////// |
---|
345 | // There is one vci_multi_icu (or vci_xicu) component per cluster, |
---|
346 | // and the number of independant ICUs is equal to NB_PROCS_MAX, |
---|
347 | // because there is one private interrupr controler per processor. |
---|
348 | //////////////////////////////////////////////////////////////////////////////// |
---|
349 | |
---|
350 | //////////////////////////////////////////////////////////////////////////////// |
---|
351 | // _icu_set_mask() |
---|
352 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
353 | // It set the mask register for the ICU channel identified by the cluster index |
---|
354 | // and the processor index: all '1' bits are set / all '0' bits are not modified. |
---|
355 | // Returns 0 if success, > 0 if error. |
---|
356 | //////////////////////////////////////////////////////////////////////////////// |
---|
357 | unsigned int _icu_set_mask( |
---|
358 | unsigned int cluster_id, |
---|
359 | unsigned int proc_id, |
---|
360 | unsigned int value, |
---|
361 | unsigned int is_timer) { |
---|
362 | // parameters checking |
---|
363 | if (cluster_id >= NB_CLUSTERS) { |
---|
364 | return 1; |
---|
365 | } |
---|
366 | if (proc_id >= NB_PROCS_MAX) { |
---|
367 | return 1; |
---|
368 | } |
---|
369 | |
---|
370 | unsigned int * icu_address = (unsigned int *) ((char *) &seg_icu_base + |
---|
371 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
---|
372 | #if USE_XICU |
---|
373 | if (is_timer) { |
---|
374 | icu_address[XICU_REG(XICU_MSK_PTI_ENABLE, proc_id)] = value; |
---|
375 | } |
---|
376 | else { |
---|
377 | icu_address[XICU_REG(XICU_MSK_HWI_ENABLE, proc_id)] = value; |
---|
378 | } |
---|
379 | #else |
---|
380 | icu_address[proc_id * ICU_SPAN + ICU_MASK_SET] = value; |
---|
381 | #endif |
---|
382 | |
---|
383 | return 0; |
---|
384 | } |
---|
385 | |
---|
386 | |
---|
387 | //////////////////////////////////////////////////////////////////////////////// |
---|
388 | // _icu_get_index() |
---|
389 | // This function can be used with both the vci_xicu & vci_multi_icu components. |
---|
390 | // It returns the index of the highest priority (smaller index) active HWI. |
---|
391 | // The ICU channel is identified by the cluster index and the processor index. |
---|
392 | // Returns 0 if success, > 0 if error. |
---|
393 | //////////////////////////////////////////////////////////////////////////////// |
---|
394 | unsigned int _icu_get_index(unsigned int cluster_id, unsigned int proc_id, unsigned int * buffer) { |
---|
395 | // parameters checking |
---|
396 | if (cluster_id >= NB_CLUSTERS) { |
---|
397 | return 1; |
---|
398 | } |
---|
399 | if (proc_id >= NB_PROCS_MAX) { |
---|
400 | return 1; |
---|
401 | } |
---|
402 | |
---|
403 | unsigned int * icu_address = (unsigned int *) ((char *) &seg_icu_base + |
---|
404 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
---|
405 | #if USE_XICU |
---|
406 | unsigned int prio = icu_address[XICU_REG(XICU_PRIO, proc_id)]; |
---|
407 | unsigned int pti_ok = (prio & 0x00000001); |
---|
408 | unsigned int hwi_ok = (prio & 0x00000002); |
---|
409 | unsigned int swi_ok = (prio & 0x00000004); |
---|
410 | unsigned int pti_id = (prio & 0x00001F00) >> 8; |
---|
411 | unsigned int hwi_id = (prio & 0x001F0000) >> 16; |
---|
412 | unsigned int swi_id = (prio & 0x1F000000) >> 24; |
---|
413 | if (pti_ok) { |
---|
414 | *buffer = pti_id; |
---|
415 | } |
---|
416 | else if (hwi_ok) { |
---|
417 | *buffer = hwi_id; |
---|
418 | } |
---|
419 | else if (swi_ok) { |
---|
420 | *buffer = swi_id; |
---|
421 | } |
---|
422 | else { |
---|
423 | *buffer = 32; |
---|
424 | } |
---|
425 | #else |
---|
426 | *buffer = icu_address[proc_id * ICU_SPAN + ICU_IT_VECTOR]; |
---|
427 | #endif |
---|
428 | |
---|
429 | return 0; |
---|
430 | } |
---|
431 | |
---|
432 | |
---|
433 | //////////////////////////////////////////////////////////////////////////////// |
---|
434 | // VciGcd driver |
---|
435 | //////////////////////////////////////////////////////////////////////////////// |
---|
436 | // The Greater Dommon Divider is a -very- simple hardware coprocessor |
---|
437 | // performing the computation of the GCD of two 32 bits integers. |
---|
438 | // It has no DMA capability. |
---|
439 | //////////////////////////////////////////////////////////////////////////////// |
---|
440 | |
---|
441 | //////////////////////////////////////////////////////////////////////////////// |
---|
442 | // _gcd_write() |
---|
443 | // Write a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
444 | // Returns 0 if success, > 0 if error. |
---|
445 | //////////////////////////////////////////////////////////////////////////////// |
---|
446 | unsigned int _gcd_write(unsigned int register_index, unsigned int value) { |
---|
447 | // parameters checking |
---|
448 | if (register_index >= GCD_END) { |
---|
449 | return 1; |
---|
450 | } |
---|
451 | |
---|
452 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
---|
453 | |
---|
454 | gcd_address[register_index] = value; // write word |
---|
455 | return 0; |
---|
456 | } |
---|
457 | |
---|
458 | |
---|
459 | //////////////////////////////////////////////////////////////////////////////// |
---|
460 | // _gcd_read() |
---|
461 | // Read a 32-bit word in a memory mapped register of the GCD coprocessor. |
---|
462 | // Returns 0 if success, > 0 if error. |
---|
463 | //////////////////////////////////////////////////////////////////////////////// |
---|
464 | unsigned int _gcd_read(unsigned int register_index, unsigned int * buffer) { |
---|
465 | // parameters checking |
---|
466 | if (register_index >= GCD_END) { |
---|
467 | return 1; |
---|
468 | } |
---|
469 | |
---|
470 | unsigned int * gcd_address = (unsigned int *) &seg_gcd_base; |
---|
471 | |
---|
472 | *buffer = gcd_address[register_index]; // read word |
---|
473 | return 0; |
---|
474 | } |
---|
475 | |
---|
476 | //////////////////////////////////////////////////////////////////////////////// |
---|
477 | // VciBlockDevice driver |
---|
478 | //////////////////////////////////////////////////////////////////////////////// |
---|
479 | // The VciBlockDevice is a single channel external storage contrÃŽler. |
---|
480 | // |
---|
481 | // The IOMMU can be activated or not: |
---|
482 | // |
---|
483 | // 1) When the IOMMU is used, a fixed size 2Mbytes vseg is allocated to |
---|
484 | // the IOC peripheral, in the I/O virtual space, and the user buffer is |
---|
485 | // dynamically remapped in the IOMMU page table. The corresponding entry |
---|
486 | // in the IOMMU PT1 is defined by the kernel _ioc_iommu_ix1 variable. |
---|
487 | // The number of pages to be unmapped is stored in the _ioc_npages variable. |
---|
488 | // The number of PT2 entries is dynamically computed and stored in the |
---|
489 | // kernel _ioc_iommu_npages variable. It cannot be larger than 512. |
---|
490 | // The user buffer is unmapped by the _ioc_completed() function when |
---|
491 | // the transfer is completed. |
---|
492 | // |
---|
493 | // 2/ If the IOMMU is not used, we check that the user buffer is mapped to a |
---|
494 | // contiguous physical buffer (this is generally true because the user space |
---|
495 | // page tables are statically constructed to use contiguous physical memory). |
---|
496 | // |
---|
497 | // Finally, the memory buffer must fulfill the following conditions: |
---|
498 | // - The user buffer must be word aligned, |
---|
499 | // - The user buffer must be mapped in user address space, |
---|
500 | // - The user buffer must be writable in case of (to_mem) access, |
---|
501 | // - The total number of physical pages occupied by the user buffer cannot |
---|
502 | // be larger than 512 pages if the IOMMU is activated, |
---|
503 | // - All physical pages occupied by the user buffer must be contiguous |
---|
504 | // if the IOMMU is not activated. |
---|
505 | // An error code is returned if these conditions are not verified. |
---|
506 | // |
---|
507 | // As the IOC component can be used by several programs running in parallel, |
---|
508 | // the _ioc_lock variable guaranties exclusive access to the device. The |
---|
509 | // _ioc_read() and _ioc_write() functions use atomic LL/SC to get the lock. |
---|
510 | // and set _ioc_lock to a non zero value. The _ioc_write() and _ioc_read() |
---|
511 | // functions are blocking, polling the _ioc_lock variable until the device is |
---|
512 | // available. |
---|
513 | // When the tranfer is completed, the ISR routine activated by the IOC IRQ |
---|
514 | // set the _ioc_done variable to a non-zero value. Possible address errors |
---|
515 | // detected by the IOC peripheral are reported by the ISR in the _ioc_status |
---|
516 | // variable. |
---|
517 | // The _ioc_completed() function is polling the _ioc_done variable, waiting for |
---|
518 | // transfer completion. When the completion is signaled, the _ioc_completed() |
---|
519 | // function reset the _ioc_done variable to zero, and releases the _ioc_lock |
---|
520 | // variable. |
---|
521 | // |
---|
522 | // In a multi-processing environment, this polling policy should be replaced by |
---|
523 | // a descheduling policy for the requesting process. |
---|
524 | /////////////////////////////////////////////////////////////////////////////// |
---|
525 | |
---|
526 | // IOC global variables |
---|
527 | in_unckdata volatile unsigned int _ioc_status= 0; |
---|
528 | in_unckdata volatile unsigned int _ioc_done = 0; |
---|
529 | in_unckdata unsigned int _ioc_lock = 0; |
---|
530 | in_unckdata unsigned int _ioc_iommu_ix1 = 0; |
---|
531 | in_unckdata unsigned int _ioc_iommu_npages; |
---|
532 | |
---|
533 | /////////////////////////////////////////////////////////////////////////////// |
---|
534 | // _ioc_access() |
---|
535 | // This function transfer data between a memory buffer and the block device. |
---|
536 | // The buffer lentgth is (count*block_size) bytes. |
---|
537 | // Arguments are: |
---|
538 | // - to_mem : from external storage to memory when non 0 |
---|
539 | // - lba : first block index on the external storage. |
---|
540 | // - user_vaddr : virtual base address of the memory buffer. |
---|
541 | // - count : number of blocks to be transfered. |
---|
542 | // Returns 0 if success, > 0 if error. |
---|
543 | /////////////////////////////////////////////////////////////////////////////// |
---|
544 | unsigned int _ioc_access( |
---|
545 | unsigned int to_mem, |
---|
546 | unsigned int lba, |
---|
547 | unsigned int user_vaddr, |
---|
548 | unsigned int count) { |
---|
549 | unsigned int user_vpn_min; // first virtuel page index in user space |
---|
550 | unsigned int user_vpn_max; // last virtual page index in user space |
---|
551 | unsigned int vpn; // current virtual page index in user space |
---|
552 | unsigned int ppn; // physical page number |
---|
553 | unsigned int flags; // page protection flags |
---|
554 | unsigned int ix2; // page index in IOMMU PT1 page table |
---|
555 | unsigned int addr; // buffer address for IOC peripheral |
---|
556 | unsigned int ppn_first; // first physical page number for user buffer |
---|
557 | |
---|
558 | // check buffer alignment |
---|
559 | if ((unsigned int) user_vaddr & 0x3) { |
---|
560 | return 1; |
---|
561 | } |
---|
562 | |
---|
563 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base ; |
---|
564 | |
---|
565 | unsigned int block_size = ioc_address[BLOCK_DEVICE_BLOCK_SIZE]; |
---|
566 | unsigned int length = count * block_size; |
---|
567 | |
---|
568 | // get user space page table virtual address |
---|
569 | unsigned int task_id = _get_current_task_id(); |
---|
570 | unsigned int user_pt_vbase = _get_context_slot(task_id, CTX_PTAB_ID); |
---|
571 | |
---|
572 | user_vpn_min = user_vaddr >> 12; |
---|
573 | user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
574 | ix2 = 0; |
---|
575 | |
---|
576 | // loop on all virtual pages covering the user buffer |
---|
577 | for (vpn = user_vpn_min; vpn <= user_vpn_max; vpn++) { |
---|
578 | // get ppn and flags for each vpn |
---|
579 | unsigned int ko = _v2p_translate((page_table_t *) user_pt_vbase, vpn, &ppn, &flags); |
---|
580 | |
---|
581 | // check access rights |
---|
582 | if (ko) { |
---|
583 | return 2; // unmapped |
---|
584 | } |
---|
585 | if ((flags & PTE_U) == 0) { |
---|
586 | return 3; // not in user space |
---|
587 | } |
---|
588 | if (((flags & PTE_W) == 0 ) && to_mem) { |
---|
589 | return 4; // not writable |
---|
590 | } |
---|
591 | |
---|
592 | // save first ppn value |
---|
593 | if (ix2 == 0) { |
---|
594 | ppn_first = ppn; |
---|
595 | } |
---|
596 | |
---|
597 | if (IOMMU_ACTIVE) { |
---|
598 | // the user buffer must be remapped in the I/0 space |
---|
599 | // check buffer length < 2 Mbytes |
---|
600 | if (ix2 > 511) { |
---|
601 | return 2; |
---|
602 | } |
---|
603 | |
---|
604 | // map the physical page in IOMMU page table |
---|
605 | _iommu_add_pte2( |
---|
606 | _ioc_iommu_ix1, // PT1 index |
---|
607 | ix2, // PT2 index |
---|
608 | ppn, // Physical page number |
---|
609 | flags); // Protection flags |
---|
610 | } |
---|
611 | else { |
---|
612 | // no IOMMU : check that physical pages are contiguous |
---|
613 | if ((ppn - ppn_first) != ix2) { |
---|
614 | return 5; // split physical buffer |
---|
615 | } |
---|
616 | } |
---|
617 | |
---|
618 | // increment page index |
---|
619 | ix2++; |
---|
620 | } // end for vpn |
---|
621 | |
---|
622 | // register the number of pages to be unmapped |
---|
623 | _ioc_iommu_npages = (user_vpn_max - user_vpn_min) + 1; |
---|
624 | |
---|
625 | // invalidate data cache in case of memory write |
---|
626 | if (to_mem) { |
---|
627 | _dcache_buf_invalidate((void *) user_vaddr, length); |
---|
628 | } |
---|
629 | |
---|
630 | // compute buffer base address for IOC depending on IOMMU activation |
---|
631 | if (IOMMU_ACTIVE) { |
---|
632 | addr = (_ioc_iommu_ix1) << 21 | (user_vaddr & 0xFFF); |
---|
633 | } |
---|
634 | else { |
---|
635 | addr = (ppn_first << 12) | (user_vaddr & 0xFFF); |
---|
636 | } |
---|
637 | |
---|
638 | // get the lock on ioc device |
---|
639 | _get_lock(&_ioc_lock); |
---|
640 | |
---|
641 | // peripheral configuration |
---|
642 | ioc_address[BLOCK_DEVICE_BUFFER] = addr; |
---|
643 | ioc_address[BLOCK_DEVICE_COUNT] = count; |
---|
644 | ioc_address[BLOCK_DEVICE_LBA] = lba; |
---|
645 | if (to_mem == 0) { |
---|
646 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_WRITE; |
---|
647 | } |
---|
648 | else { |
---|
649 | ioc_address[BLOCK_DEVICE_OP] = BLOCK_DEVICE_READ; |
---|
650 | } |
---|
651 | |
---|
652 | return 0; |
---|
653 | } |
---|
654 | |
---|
655 | |
---|
656 | ///////////////////////////////////////////////////////////////////////////////// |
---|
657 | // _ioc_completed() |
---|
658 | // |
---|
659 | // This function checks completion of an I/O transfer and reports errors. |
---|
660 | // As it is a blocking call, the processor is stalled. |
---|
661 | // If the virtual memory is activated, the pages mapped in the I/O virtual |
---|
662 | // space are unmapped, and the IOB TLB is cleared. |
---|
663 | // Returns 0 if success, > 0 if error. |
---|
664 | ///////////////////////////////////////////////////////////////////////////////// |
---|
665 | unsigned int _ioc_completed() { |
---|
666 | unsigned int ret; |
---|
667 | unsigned int ix2; |
---|
668 | |
---|
669 | // busy waiting |
---|
670 | while (_ioc_done == 0) { |
---|
671 | asm volatile("nop"); |
---|
672 | } |
---|
673 | |
---|
674 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
675 | if (IOMMU_ACTIVE) { |
---|
676 | unsigned int * iob_address = (unsigned int *) &seg_iob_base; |
---|
677 | |
---|
678 | for (ix2 = 0; ix2 < _ioc_iommu_npages; ix2++) { |
---|
679 | // unmap the page in IOMMU page table |
---|
680 | _iommu_inval_pte2( |
---|
681 | _ioc_iommu_ix1, // PT1 index |
---|
682 | ix2 ); // PT2 index |
---|
683 | |
---|
684 | // clear IOMMU TLB |
---|
685 | iob_address[IOB_INVAL_PTE] = (_ioc_iommu_ix1 << 21) | (ix2 << 12); |
---|
686 | } |
---|
687 | } |
---|
688 | |
---|
689 | // test IOC status |
---|
690 | if ((_ioc_status != BLOCK_DEVICE_READ_SUCCESS) |
---|
691 | && (_ioc_status != BLOCK_DEVICE_WRITE_SUCCESS)) { |
---|
692 | ret = 1; // error |
---|
693 | } |
---|
694 | else { |
---|
695 | ret = 0; // success |
---|
696 | } |
---|
697 | |
---|
698 | // reset synchronization variables |
---|
699 | _ioc_done = 0; |
---|
700 | asm volatile("sync"); |
---|
701 | _ioc_lock = 0; |
---|
702 | |
---|
703 | return ret; |
---|
704 | } |
---|
705 | |
---|
706 | |
---|
707 | /////////////////////////////////////////////////////////////////////////////// |
---|
708 | // _ioc_read() |
---|
709 | // Transfer data from the block device to a memory buffer in user space. |
---|
710 | // - lba : first block index on the block device |
---|
711 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
712 | // - count : number of blocks to be transfered. |
---|
713 | // Returns 0 if success, > 0 if error. |
---|
714 | /////////////////////////////////////////////////////////////////////////////// |
---|
715 | unsigned int _ioc_read(unsigned int lba, void * buffer, unsigned int count) { |
---|
716 | return _ioc_access( |
---|
717 | 1, // read access |
---|
718 | lba, |
---|
719 | (unsigned int) buffer, |
---|
720 | count); |
---|
721 | } |
---|
722 | |
---|
723 | |
---|
724 | /////////////////////////////////////////////////////////////////////////////// |
---|
725 | // _ioc_write() |
---|
726 | // Transfer data from a memory buffer in user space to the block device. |
---|
727 | // - lba : first block index on the block device |
---|
728 | // - buffer : base address of the memory buffer (must be word aligned) |
---|
729 | // - count : number of blocks to be transfered. |
---|
730 | // Returns 0 if success, > 0 if error. |
---|
731 | /////////////////////////////////////////////////////////////////////////////// |
---|
732 | unsigned int _ioc_write(unsigned int lba, const void * buffer, unsigned int count) { |
---|
733 | return _ioc_access( |
---|
734 | 0, // write access |
---|
735 | lba, |
---|
736 | (unsigned int) buffer, |
---|
737 | count); |
---|
738 | } |
---|
739 | |
---|
740 | |
---|
741 | /////////////////////////////////////////////////////////////////////////////// |
---|
742 | // _ioc_get_status() |
---|
743 | // This function returns the transfert status, and acknowledge the IRQ. |
---|
744 | // Returns 0 if success, > 0 if error. |
---|
745 | /////////////////////////////////////////////////////////////////////////////// |
---|
746 | unsigned int _ioc_get_status(unsigned int * status) { |
---|
747 | // get IOC base address |
---|
748 | unsigned int * ioc_address = (unsigned int *) &seg_ioc_base; |
---|
749 | |
---|
750 | *status = ioc_address[BLOCK_DEVICE_STATUS]; // read status & reset IRQ |
---|
751 | return 0; |
---|
752 | } |
---|
753 | |
---|
754 | |
---|
755 | ////////////////////////////////////////////////////////////////////////////////// |
---|
756 | // VciMultiDma driver |
---|
757 | ////////////////////////////////////////////////////////////////////////////////// |
---|
758 | // The DMA controllers are physically distributed in the clusters. |
---|
759 | // There is (NB_CLUSTERS * NB_DMAS_MAX) channels, indexed by a global index: |
---|
760 | // dma_id = cluster_id * NB_DMA_MAX + loc_id |
---|
761 | // |
---|
762 | // As a DMA channel can be used by several tasks, each DMA channel is protected |
---|
763 | // by a specific lock: _dma_lock[dma_id] |
---|
764 | // The signalisation between the OS and the DMA uses the _dma_done[dma_id] |
---|
765 | // synchronisation variables (set by the ISR, and reset by the OS). |
---|
766 | // The transfer status is copied by the ISR in the _dma_status[dma_id] variables. |
---|
767 | // |
---|
768 | // These DMA channels can be used by the FB driver, or by the NIC driver. |
---|
769 | ////////////////////////////////////////////////////////////////////////////////// |
---|
770 | |
---|
771 | #if NB_DMAS_MAX > 0 |
---|
772 | in_unckdata unsigned int _dma_lock[NB_DMAS_MAX * NB_CLUSTERS] = { |
---|
773 | [0 ... (NB_DMAS_MAX * NB_CLUSTERS) - 1] = 0 |
---|
774 | }; |
---|
775 | |
---|
776 | in_unckdata volatile unsigned int _dma_done[NB_DMAS_MAX * NB_CLUSTERS] = { |
---|
777 | [0 ... (NB_DMAS_MAX * NB_CLUSTERS) - 1] = 0 |
---|
778 | }; |
---|
779 | |
---|
780 | in_unckdata volatile unsigned int _dma_status[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
781 | in_unckdata unsigned int _dma_iommu_ix1 = 1; |
---|
782 | in_unckdata unsigned int _dma_iommu_npages[NB_DMAS_MAX * NB_CLUSTERS]; |
---|
783 | #endif |
---|
784 | |
---|
785 | ////////////////////////////////////////////////////////////////////////////////// |
---|
786 | // _dma_reset_irq() |
---|
787 | ////////////////////////////////////////////////////////////////////////////////// |
---|
788 | unsigned int _dma_reset_irq(unsigned int cluster_id, unsigned int channel_id) { |
---|
789 | #if NB_DMAS_MAX > 0 |
---|
790 | // parameters checking |
---|
791 | if (cluster_id >= NB_CLUSTERS) { |
---|
792 | return 1; |
---|
793 | } |
---|
794 | if (channel_id >= NB_DMAS_MAX) { |
---|
795 | return 1; |
---|
796 | } |
---|
797 | |
---|
798 | // compute DMA base address |
---|
799 | unsigned int * dma_address = (unsigned int *) ((char *) &seg_dma_base + |
---|
800 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
---|
801 | |
---|
802 | dma_address[channel_id * DMA_SPAN + DMA_RESET] = 0; |
---|
803 | return 0; |
---|
804 | #else |
---|
805 | return -1; |
---|
806 | #endif |
---|
807 | } |
---|
808 | |
---|
809 | |
---|
810 | ////////////////////////////////////////////////////////////////////////////////// |
---|
811 | // _dma_get_status() |
---|
812 | ////////////////////////////////////////////////////////////////////////////////// |
---|
813 | unsigned int _dma_get_status(unsigned int cluster_id, unsigned int channel_id, unsigned int * status) { |
---|
814 | #if NB_DMAS_MAX > 0 |
---|
815 | // parameters checking |
---|
816 | if (cluster_id >= NB_CLUSTERS) { |
---|
817 | return 1; |
---|
818 | } |
---|
819 | if (channel_id >= NB_DMAS_MAX) { |
---|
820 | return 1; |
---|
821 | } |
---|
822 | |
---|
823 | // compute DMA base address |
---|
824 | unsigned int * dma_address = (unsigned int *) ((char *) &seg_dma_base + |
---|
825 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
---|
826 | |
---|
827 | *status = dma_address[channel_id * DMA_SPAN + DMA_LEN]; |
---|
828 | return 0; |
---|
829 | #else |
---|
830 | return -1; |
---|
831 | #endif |
---|
832 | } |
---|
833 | |
---|
834 | |
---|
835 | ////////////////////////////////////////////////////////////////////////////////// |
---|
836 | // _dma_transfer() |
---|
837 | // Transfer data between a user buffer and a device buffer using DMA. |
---|
838 | // Two devices types are supported: Frame Buffer if dev_type == 0 |
---|
839 | // Multi-Nic if dev_type != 0 |
---|
840 | // Arguments are: |
---|
841 | // - dev_type : device type. |
---|
842 | // - to_user : from device buffer to user buffer when true. |
---|
843 | // - offset : offset (in bytes) in the device buffer. |
---|
844 | // - user_vaddr : virtual base address of the user buffer. |
---|
845 | // - length : number of bytes to be transfered. |
---|
846 | // |
---|
847 | // The DMA channel is obtained from task context (CTX_FBDMA_ID / CTX_NIDMA_ID. |
---|
848 | // The user buffer must be mapped in user address space and word-aligned. |
---|
849 | // The user buffer length must be multiple of 4 bytes. |
---|
850 | // Me must compute the physical base addresses for both the device buffer |
---|
851 | // and the user buffer before programming the DMA transfer. |
---|
852 | // The GIET being fully static, we don't need to split the transfer in 4 Kbytes |
---|
853 | // pages, because the user buffer is contiguous in physical space. |
---|
854 | // Returns 0 if success, > 0 if error. |
---|
855 | ////////////////////////////////////////////////////////////////////////////////// |
---|
856 | unsigned int _dma_transfer( |
---|
857 | unsigned int dev_type, |
---|
858 | unsigned int to_user, |
---|
859 | unsigned int offset, |
---|
860 | unsigned int user_vaddr, |
---|
861 | unsigned int length) { |
---|
862 | #if NB_DMAS_MAX > 0 |
---|
863 | unsigned int ko; // unsuccessfull V2P translation |
---|
864 | unsigned int flags; // protection flags |
---|
865 | unsigned int ppn; // physical page number |
---|
866 | unsigned int user_pbase; // user buffer pbase address |
---|
867 | unsigned int device_pbase; // frame buffer pbase address |
---|
868 | unsigned int device_vaddr; // device buffer vbase address |
---|
869 | |
---|
870 | // check user buffer address and length alignment |
---|
871 | if ((user_vaddr & 0x3) || (length & 0x3)) { |
---|
872 | _get_lock(&_tty_put_lock); |
---|
873 | _puts("\n[GIET ERROR] in _dma_transfer : user buffer not word aligned\n"); |
---|
874 | _release_lock(&_tty_put_lock); |
---|
875 | return 1; |
---|
876 | } |
---|
877 | |
---|
878 | // get DMA channel and compute DMA vbase address |
---|
879 | unsigned int task_id = _get_current_task_id(); |
---|
880 | unsigned int dma_id = _get_context_slot(task_id, CTX_DMA_ID); |
---|
881 | unsigned int cluster_id = dma_id / NB_DMAS_MAX; |
---|
882 | unsigned int loc_id = dma_id % NB_DMAS_MAX; |
---|
883 | unsigned int * dma_base = (unsigned int *) ((char *) &seg_dma_base + |
---|
884 | (cluster_id * (unsigned) CLUSTER_SIZE)); |
---|
885 | |
---|
886 | // get page table address |
---|
887 | unsigned int user_ptab = _get_context_slot( task_id, CTX_PTAB_ID); |
---|
888 | |
---|
889 | // get peripheral buffer virtual address |
---|
890 | if ( dev_type) { |
---|
891 | device_vaddr = (unsigned int) &seg_nic_base + offset; |
---|
892 | } |
---|
893 | else { |
---|
894 | device_vaddr = (unsigned int) &seg_fbf_base + offset; |
---|
895 | } |
---|
896 | |
---|
897 | // get device buffer physical address |
---|
898 | ko = _v2p_translate((page_table_t *) user_ptab, (device_vaddr >> 12), &ppn, &flags); |
---|
899 | if (ko) { |
---|
900 | _get_lock(&_tty_put_lock); |
---|
901 | _puts("\n[GIET ERROR] in _dma_transfer : device buffer unmapped\n"); |
---|
902 | _release_lock(&_tty_put_lock); |
---|
903 | return 2; |
---|
904 | } |
---|
905 | device_pbase = (ppn << 12) | (device_vaddr & 0x00000FFF); |
---|
906 | |
---|
907 | // Compute user buffer physical address |
---|
908 | ko = _v2p_translate( (page_table_t*)user_ptab, (user_vaddr >> 12), &ppn, &flags); |
---|
909 | if (ko) { |
---|
910 | _get_lock(&_tty_put_lock); |
---|
911 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer unmapped\n"); |
---|
912 | _release_lock(&_tty_put_lock); |
---|
913 | return 3; |
---|
914 | } |
---|
915 | if ((flags & PTE_U) == 0) { |
---|
916 | _get_lock(&_tty_put_lock); |
---|
917 | _puts("[GIET ERROR] in _dma_transfer() : user buffer not in user space\n"); |
---|
918 | _release_lock(&_tty_put_lock); |
---|
919 | return 4; |
---|
920 | } |
---|
921 | if (((flags & PTE_W) == 0 ) && to_user) { |
---|
922 | _get_lock(&_tty_put_lock); |
---|
923 | _puts("\n[GIET ERROR] in _dma_transfer() : user buffer not writable\n"); |
---|
924 | _release_lock(&_tty_put_lock); |
---|
925 | return 5; |
---|
926 | } |
---|
927 | user_pbase = (ppn << 12) | (user_vaddr & 0x00000FFF); |
---|
928 | |
---|
929 | /* This is a draft for IOMMU support |
---|
930 | |
---|
931 | // loop on all virtual pages covering the user buffer |
---|
932 | unsigned int user_vpn_min = user_vaddr >> 12; |
---|
933 | unsigned int user_vpn_max = (user_vaddr + length - 1) >> 12; |
---|
934 | unsigned int ix2 = 0; |
---|
935 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
936 | |
---|
937 | for ( vpn = user_vpn_min ; vpn <= user_vpn_max ; vpn++ ) |
---|
938 | { |
---|
939 | // get ppn and flags for each vpn |
---|
940 | unsigned int ko = _v2p_translate( (page_table_t*)user_pt_vbase, |
---|
941 | vpn, |
---|
942 | &ppn, |
---|
943 | &flags ); |
---|
944 | |
---|
945 | // check access rights |
---|
946 | if ( ko ) return 3; // unmapped |
---|
947 | if ( (flags & PTE_U) == 0 ) return 4; // not in user space |
---|
948 | if ( ( (flags & PTE_W) == 0 ) && to_user ) return 5; // not writable |
---|
949 | |
---|
950 | // save first ppn value |
---|
951 | if ( ix2 == 0 ) ppn_first = ppn; |
---|
952 | |
---|
953 | if ( IOMMU_ACTIVE ) // the user buffer must be remapped in the I/0 space |
---|
954 | { |
---|
955 | // check buffer length < 2 Mbytes |
---|
956 | if ( ix2 > 511 ) return 2; |
---|
957 | |
---|
958 | // map the physical page in IOMMU page table |
---|
959 | _iommu_add_pte2( ix1, // PT1 index |
---|
960 | ix2, // PT2 index |
---|
961 | ppn, // physical page number |
---|
962 | flags ); // protection flags |
---|
963 | } |
---|
964 | else // no IOMMU : check that physical pages are contiguous |
---|
965 | { |
---|
966 | if ( (ppn - ppn_first) != ix2 ) return 6; // split physical buffer |
---|
967 | } |
---|
968 | |
---|
969 | // increment page index |
---|
970 | ix2++; |
---|
971 | } // end for vpn |
---|
972 | |
---|
973 | // register the number of pages to be unmapped if iommu activated |
---|
974 | _dma_iommu_npages[dma_id] = (user_vpn_max - user_vpn_min) + 1; |
---|
975 | |
---|
976 | */ |
---|
977 | |
---|
978 | // invalidate data cache in case of memory write |
---|
979 | if (to_user) { |
---|
980 | _dcache_buf_invalidate((void *) user_vaddr, length); |
---|
981 | } |
---|
982 | |
---|
983 | // get the lock |
---|
984 | _get_lock(&_dma_lock[dma_id]); |
---|
985 | |
---|
986 | // DMA configuration |
---|
987 | if (to_user) { |
---|
988 | dma_base[loc_id * DMA_SPAN + DMA_SRC] = (unsigned int) device_pbase; |
---|
989 | dma_base[loc_id * DMA_SPAN + DMA_DST] = (unsigned int) user_pbase; |
---|
990 | } |
---|
991 | else { |
---|
992 | dma_base[loc_id * DMA_SPAN + DMA_SRC] = (unsigned int) user_pbase; |
---|
993 | dma_base[loc_id * DMA_SPAN + DMA_DST] = (unsigned int) device_pbase; |
---|
994 | } |
---|
995 | dma_base[loc_id * DMA_SPAN + DMA_LEN] = (unsigned int) length; |
---|
996 | |
---|
997 | return 0; |
---|
998 | #else //NB_DMAS_MAX == 0 |
---|
999 | return -1; |
---|
1000 | #endif |
---|
1001 | } // end _dma_transfer() |
---|
1002 | |
---|
1003 | |
---|
1004 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1005 | // _dma_completed() |
---|
1006 | // This function checks completion of a DMA transfer to or from a peripheral |
---|
1007 | // device (Frame Buffer or Multi-Nic). |
---|
1008 | // As it is a blocking call, the processor is busy waiting. |
---|
1009 | // Returns 0 if success, > 0 if error |
---|
1010 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
1011 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1012 | unsigned int _dma_completed() { |
---|
1013 | #if NB_DMAS_MAX > 0 |
---|
1014 | unsigned int task_id = _get_current_task_id(); |
---|
1015 | unsigned int dma_id = _get_context_slot(task_id, CTX_DMA_ID); |
---|
1016 | unsigned int dma_ret; |
---|
1017 | |
---|
1018 | // busy waiting with a pseudo random delay between bus access |
---|
1019 | while (_dma_done[dma_id] == 0) { |
---|
1020 | unsigned int delay = (( _proctime() ^ _procid() << 4) & 0x3F) + 1; |
---|
1021 | asm volatile( |
---|
1022 | "move $3, %0 \n" |
---|
1023 | "loop_nic_completed: \n" |
---|
1024 | "addi $3, $3, -1 \n" |
---|
1025 | "bnez $3, loop_nic_completed \n" |
---|
1026 | "nop \n" |
---|
1027 | : |
---|
1028 | : "r" (delay) |
---|
1029 | : "$3"); |
---|
1030 | } |
---|
1031 | |
---|
1032 | /* draft support for IOMMU |
---|
1033 | // unmap the buffer from IOMMU page table if IOMMU is activated |
---|
1034 | if ( GIET_IOMMU_ACTIVE ) |
---|
1035 | { |
---|
1036 | unsigned int* iob_address = (unsigned int*)&seg_iob_base; |
---|
1037 | |
---|
1038 | unsigned int ix1 = _dma_iommu_ix1 + dma_id; |
---|
1039 | unsigned int ix2; |
---|
1040 | |
---|
1041 | for ( ix2 = 0 ; ix2 < _dma_iommu_npages[dma_id] ; ix2++ ) |
---|
1042 | { |
---|
1043 | // unmap the page in IOMMU page table |
---|
1044 | _iommu_inval_pte2( ix1, // PT1 index |
---|
1045 | ix2 ); // PT2 index |
---|
1046 | |
---|
1047 | // clear IOMMU TLB |
---|
1048 | iob_address[IOB_INVAL_PTE] = (ix1 << 21) | (ix2 << 12); |
---|
1049 | } |
---|
1050 | } |
---|
1051 | */ |
---|
1052 | |
---|
1053 | // reset synchronization variables |
---|
1054 | _dma_done[dma_id] = 0; |
---|
1055 | dma_ret = _dma_status[dma_id]; |
---|
1056 | asm volatile("sync\n"); |
---|
1057 | _dma_lock[dma_id] = 0; |
---|
1058 | |
---|
1059 | return dma_ret; |
---|
1060 | |
---|
1061 | #else //NB_DMAS_MAX == 0 |
---|
1062 | return -1; |
---|
1063 | #endif |
---|
1064 | } // end _dma_completed |
---|
1065 | |
---|
1066 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1067 | // VciFrameBuffer driver |
---|
1068 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1069 | // The vci_frame_buffer device can be accessed directly by software with memcpy(), |
---|
1070 | // or it can be accessed through a multi-channels DMA component: |
---|
1071 | // |
---|
1072 | // The '_fb_sync_write' and '_fb_sync_read' functions use a memcpy strategy to |
---|
1073 | // implement the transfer between a data buffer (user space) and the frame |
---|
1074 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
1075 | // |
---|
1076 | // The '_fb_write()', '_fb_read()' and '_fb_completed()' functions use the |
---|
1077 | // VciMultiDma components (distributed in the clusters) to transfer data |
---|
1078 | // between the user buffer and the frame buffer. A FBDMA channel is |
---|
1079 | // allocated to each task requesting it in the mapping_info data structure. |
---|
1080 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1081 | |
---|
1082 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1083 | // _fb_sync_write() |
---|
1084 | // Transfer data from an memory buffer to the frame_buffer device using a memcpy. |
---|
1085 | // - offset : offset (in bytes) in the frame buffer. |
---|
1086 | // - buffer : base address of the memory buffer. |
---|
1087 | // - length : number of bytes to be transfered. |
---|
1088 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1089 | unsigned int _fb_sync_write(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1090 | unsigned char * fb_address = (unsigned char *) &seg_fbf_base + offset; |
---|
1091 | memcpy((void *) fb_address, (void *) buffer, length); |
---|
1092 | return 0; |
---|
1093 | } |
---|
1094 | |
---|
1095 | |
---|
1096 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1097 | // _fb_sync_read() |
---|
1098 | // Transfer data from the frame_buffer device to a memory buffer using a memcpy. |
---|
1099 | // - offset : offset (in bytes) in the frame buffer. |
---|
1100 | // - buffer : base address of the memory buffer. |
---|
1101 | // - length : number of bytes to be transfered. |
---|
1102 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1103 | unsigned int _fb_sync_read(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1104 | unsigned char * fb_address = (unsigned char *) &seg_fbf_base + offset; |
---|
1105 | memcpy((void *) buffer, (void *) fb_address, length); |
---|
1106 | return 0; |
---|
1107 | } |
---|
1108 | |
---|
1109 | |
---|
1110 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1111 | // _fb_write() |
---|
1112 | // Transfer data from a memory buffer to the frame_buffer device using DMA. |
---|
1113 | // - offset : offset (in bytes) in the frame buffer. |
---|
1114 | // - buffer : base address of the memory buffer. |
---|
1115 | // - length : number of bytes to be transfered. |
---|
1116 | // Returns 0 if success, > 0 if error. |
---|
1117 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1118 | unsigned int _fb_write(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1119 | return _dma_transfer( |
---|
1120 | 0, // frame buffer |
---|
1121 | 0, // write |
---|
1122 | offset, |
---|
1123 | (unsigned int) buffer, |
---|
1124 | length); |
---|
1125 | } |
---|
1126 | |
---|
1127 | |
---|
1128 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1129 | // _fb_read() |
---|
1130 | // Transfer data from the frame_buffer device to a memory buffer using DMA. |
---|
1131 | // - offset : offset (in bytes) in the frame buffer. |
---|
1132 | // - buffer : base address of the memory buffer. |
---|
1133 | // - length : number of bytes to be transfered. |
---|
1134 | // Returns 0 if success, > 0 if error. |
---|
1135 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1136 | unsigned int _fb_read(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1137 | return _dma_transfer( |
---|
1138 | 0, // frame buffer |
---|
1139 | 1, // read |
---|
1140 | offset, |
---|
1141 | (unsigned int) buffer, |
---|
1142 | length); |
---|
1143 | } |
---|
1144 | |
---|
1145 | |
---|
1146 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1147 | // _fb_completed() |
---|
1148 | // This function checks completion of a DMA transfer to or fom the frame buffer. |
---|
1149 | // As it is a blocking call, the processor is busy waiting. |
---|
1150 | // Returns 0 if success, > 0 if error |
---|
1151 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
1152 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1153 | unsigned int _fb_completed() { |
---|
1154 | return _dma_completed(); |
---|
1155 | } |
---|
1156 | |
---|
1157 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1158 | // VciMultiNic driver |
---|
1159 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1160 | // The VciMultiNic device can be accessed directly by software with memcpy(), |
---|
1161 | // or it can be accessed through a multi-channels DMA component: |
---|
1162 | // |
---|
1163 | // The '_nic_sync_write' and '_nic_sync_read' functions use a memcpy strategy to |
---|
1164 | // implement the transfer between a data buffer (user space) and the NIC |
---|
1165 | // buffer (kernel space). They are blocking until completion of the transfer. |
---|
1166 | // |
---|
1167 | // The '_nic_write()', '_nic_read()' and '_nic_completed()' functions use the |
---|
1168 | // VciMultiDma components (distributed in the clusters) to transfer data |
---|
1169 | // between the user buffer and the NIC. A NIDMA channel is allocated to each |
---|
1170 | // task requesting it in the mapping_info data structure. |
---|
1171 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1172 | |
---|
1173 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1174 | // _nic_sync_write() |
---|
1175 | // Transfer data from an memory buffer to the NIC device using a memcpy. |
---|
1176 | // - offset : offset (in bytes) in the frame buffer. |
---|
1177 | // - buffer : base address of the memory buffer. |
---|
1178 | // - length : number of bytes to be transfered. |
---|
1179 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1180 | unsigned int _nic_sync_write(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1181 | unsigned char * nic_address = (unsigned char *) &seg_nic_base + offset; |
---|
1182 | memcpy((void *) nic_address, (void *) buffer, length); |
---|
1183 | return 0; |
---|
1184 | } |
---|
1185 | |
---|
1186 | |
---|
1187 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1188 | // _nic_sync_read() |
---|
1189 | // Transfer data from the NIC device to a memory buffer using a memcpy. |
---|
1190 | // - offset : offset (in bytes) in the frame buffer. |
---|
1191 | // - buffer : base address of the memory buffer. |
---|
1192 | // - length : number of bytes to be transfered. |
---|
1193 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1194 | unsigned int _nic_sync_read(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1195 | unsigned char *nic_address = (unsigned char *) &seg_nic_base + offset; |
---|
1196 | memcpy((void *) buffer, (void *) nic_address, length); |
---|
1197 | return 0; |
---|
1198 | } |
---|
1199 | |
---|
1200 | |
---|
1201 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1202 | // _nic_write() |
---|
1203 | // Transfer data from a memory buffer to the NIC device using DMA. |
---|
1204 | // - offset : offset (in bytes) in the frame buffer. |
---|
1205 | // - buffer : base address of the memory buffer. |
---|
1206 | // - length : number of bytes to be transfered. |
---|
1207 | // Returns 0 if success, > 0 if error. |
---|
1208 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1209 | unsigned int _nic_write(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1210 | return _dma_transfer( |
---|
1211 | 1, // NIC |
---|
1212 | 0, // write |
---|
1213 | offset, |
---|
1214 | (unsigned int) buffer, |
---|
1215 | length ); |
---|
1216 | } |
---|
1217 | |
---|
1218 | |
---|
1219 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1220 | // _nic_read() |
---|
1221 | // Transfer data from the NIC device to a memory buffer using DMA. |
---|
1222 | // - offset : offset (in bytes) in the frame buffer. |
---|
1223 | // - buffer : base address of the memory buffer. |
---|
1224 | // - length : number of bytes to be transfered. |
---|
1225 | // Returns 0 if success, > 0 if error. |
---|
1226 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1227 | unsigned int _nic_read(unsigned int offset, const void * buffer, unsigned int length) { |
---|
1228 | return _dma_transfer( |
---|
1229 | 1, // NIC |
---|
1230 | 1, // read |
---|
1231 | offset, |
---|
1232 | (unsigned int) buffer, |
---|
1233 | length ); |
---|
1234 | } |
---|
1235 | |
---|
1236 | |
---|
1237 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1238 | // _nic_completed() |
---|
1239 | // This function checks completion of a DMA transfer to or fom a NIC channel. |
---|
1240 | // As it is a blocking call, the processor is busy waiting. |
---|
1241 | // Returns 0 if success, > 0 if error |
---|
1242 | // (1 == read error / 2 == DMA idle error / 3 == write error) |
---|
1243 | ////////////////////////////////////////////////////////////////////////////////// |
---|
1244 | unsigned int _nic_completed() { |
---|
1245 | return _dma_completed(); |
---|
1246 | } |
---|
1247 | |
---|
1248 | // Local Variables: |
---|
1249 | // tab-width: 4 |
---|
1250 | // c-basic-offset: 4 |
---|
1251 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
1252 | // indent-tabs-mode: nil |
---|
1253 | // End: |
---|
1254 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
1255 | |
---|