source: papers/FDL2012/abstraction_refinement.tex @ 56

Last change on this file since 56 was 56, checked in by cecile, 12 years ago

add defintions concrete, and modify refinement, cex defintion

File size: 13.3 KB
Line 
1
2We suppose that our concrete model is a composition of several components and each component has been previously verified. Hence, we have a set of verified properties for each component of the concrete model. The main idea of this technique is that we would like to make use of these properties to generate a better abstract model. Properties of the components that appear to be related to the global property to be verified, $\phi$ are selected to generate the abstract model $\widehat{M}_i$. This method is particularly interesting as it gives a possibility to converge quicker to an abstract model that is sufficient to satisfy the global property $\phi$.
3
4\subsection{Properties of good refinement}
5When a counterexample is found to be spurious, it means that the current abstract model $\widehat{M}_i$ is too coarse and has to be refined.
6In this section, we will discuss about the refinement technique based on the integration of more verified properties of the concrete model's components in the abstract model to be generated. Moreover, the refinement step from $\widehat{M}_i$ to $\widehat{M}_{i+1}$ respects the properties below:
7
8%\medskip
9
10\begin{property}
11\begin{enumerate}
12\item The new refinment is an over-approximation of the concrete model: $\widehat{M}_{i+1} \sqsubseteq \widehat{M}$.
13\item The new refinment is more concrete than the previous one:
14$\widehat{M}_{i} \sqsubseteq \widehat{M}_{i+1}$.
15\item The spurious counter-example in $\widehat{M}_i$ is  removed from
16$\widehat{M_{i+1}}$.
17\end{enumerate}
18\end{property}
19
20Moreover, the refinement steps should be easy to compute and ensure a fast
21convergence by the minimizing the number of iteration of the CEGAR loop.
22
23
24A possible refinement : concretization of selected abstract variables. How to choose variables and instants of concretization : introduce new CTL properties. The question is : how to select pertinent CTL properties ???
25
26\TODO{discussion sur comment garantir les points 1/2/3 et le reste du bon
27rafinement}
28\subsection{The Counterexample}
29
30\TODO{Mettre la def avant}
31\TODO{Rafinement par négation du contre-exemple}
32The counterexample at a refinement step $i$, $\sigma$ is a path in the
33abstract model $\widehat{M}_i$ which dissatisfy $\Phi$.  In the counterexample given by the model-checker, the variables' value in each states are boolean.
34The spurious counter-example $\sigma$ is defined such that :
35\begin{definition}
36\textbf{\emph{The counterexample $\sigma$ :}} \\
37\\
38Let $\widehat{M}_i =\langle \widehat{AP}_i, \widehat{S}_i, \widehat{S}_{0i},
39\widehat{L}_i, \widehat{R}_i, \widehat{F}_i \rangle$ and let the length of the
40counterexample, $|\sigma| = n$: $ \sigma = s_{0} \rightarrow s_{1} \ldots
41s_{n}$ with $(s_{k}, s_{k+1}) \in \widehat{R}_i$ $\forall k \in [0..n-1]$.
42\begin{itemize}
43\item All its variables are concrete: $\forall s_i$ and $\forall p\in
44\widehat{AP}_i$, $p$ is either true or false
45(not {\it unknown}).
46\item  $\sigma$ is a counter-example in  $\widehat{M}_i$: $s_0\not\models \Phi$.
47\item  $\sigma$ is not a path of the concrete system $M$: $\exists k$ such
48that $(s_{k}, s_{k+1}) \not\in R$.
49\end{definition}
50
51%\bigskip
52
53%\begin{definition}
54%\textbf{\emph{Spurious counterexample :}} \\
55%\\
56%Let $\sigma_c = \langle s_{c,0}, s_{c,1}, s_{c,2}, ... , s_{c,k}, s_{c,k+1}, ... , s_{c,n}\rangle$ a path of length $n$ in the concrete model $M$ and in each state of $\sigma_c$ we have $s_{c,k} = \langle v_{c,k}^1, v_{c,k}^2, ... ,  v_{c,k}^{p'}, ... , v_{c,k}^{q'} \rangle$ with $\forall p' \in [1,q'], ~v_{i,k}^{p'} \in V_{c,k}$ and $V_{c,k} \in 2^{q'}$.\\
57%
58%\smallskip
59%
60%If $\forall k$ we have $\widehat{V}_{i,k} \subseteq V_{c,k}$ and $\forall v_{\bar{a}i,k} \in \widehat{V}_{i,k}, ~s_{i,k}|_{v_{\bar{a}i,k}} = s_{c,k}|_{v_{c,k}} $ then $M \nvDash \phi$ else $\sigma_i$ is \emph{spurious}.
61%
62%\end{definition}
63
64
65
66\subsection{Ordering of properties}
67
68Before generating an abstract model to verify a global property $\phi$, the verified properties of all the components in the concrete model are ordered according to their pertinency in comparison to a global property $\phi$. In order to do so, the variable dependency of the variables present in global property $\phi$ has to be analysed. After this point, we refer to the variables present in the global property $\phi$ as \emph{primary variables}.
69
70%\bigskip
71
72The ordering of the properties will be based on the variable dependency graph.
73The variables in the model are weighted according to their dependency level
74\emph{vis-à-vis} primary variables and the properties will be weighted according to the sum of the weights of the variables present in it. We have decided to allocate a supplementary weight for variables which are present at the interface of a component whereas variables which do not interfere in the obtention of a primary variable will be weighted 0. Here is how we proceed:
75
76
77\begin{enumerate}
78
79\item {\emph{Establishment of primary variables' dependency and maximum graph depth}\\
80Each primary variable will be examined and their dependency graph is elobarated. The maximum graph depth among the primary variable dependency graphs will be identified and used to calibrate the weight of all the variables related to the global property.
81Given the primary variables of $\phi$, $V_{\phi} =  \langle v_{\phi_0}, v_{\phi_1}, ... , v_{\phi_k}, ... , v_{\phi_n} \rangle$ and $G{\_v_{\phi_k}}$ the dependency graph of primary variable $v_{\phi_k}$, we have the maximum graph depth $max_{d} = max(depth(Gv_{\phi_0}), depth(Gv_{\phi_1}), ... , depth(Gv_{\phi_k}), ... ,$\\$ depth(Gv_{\phi_n})) $.
82
83}
84
85\item {\emph{Weight allocation for each variables} \\
86Let's suppose $max_d$ is the maximum dependency graph depth calculated and $p$ is the unit weight. We allocate the variable weight as follows:
87\begin{itemize}
88\item{All the variables at degree $max_d$ of every dependency graph will be allocated the weight of $p$.}
89 \\ \hspace*{20mm} $Wv_{max_d} = p$
90\item{All the variables at degree $max_d - 1$ of every dependency graph will be allocated the weight of $2Wv_{max_d}$.}
91\\ \hspace*{20mm} $Wv_{max_d - 1} = 2Wv_{max_d}$
92\item{...}
93\item{All the variables at degree $1$ of every dependency graph will be allocated the weight of $2Wv_{2}$.}
94 \\ \hspace*{20mm} $Wv_{1} = 2Wv_{2}$
95\item{All the variables at degree $0$ (i.e. the primary variables) will be allocated the weight of $10Wv_{1}$.}
96 \\ \hspace*{20mm} $Wv_{0} = 10Wv_{1}$
97\end{itemize}
98
99We can see here that the primary variables are given a considerable
100ponderation due to their pertinency \emph{vis-à-vis} global  property. Furthermore, we will allocate a supplementary weight of $3Wv_{1}$ to variables at the interface of a component as they are the variables which assure the connection between the components if there is at least one variable in the dependency graph established in the previous step in the property. All other non-related variables have a weight equals to $0$.
101}
102
103
104\item {\emph{Ordering of the properties} \\
105Properties will be ordered according to the sum of the weight of the variables in it. Therefore, given a property $\varphi_i$ which contains $n+1$ variables, $V_{\varphi_i} =  \langle v_{\varphi_{i0}}, v_{\varphi_{i1}}, ... , v_{\varphi_{ik}}, ... , v_{\varphi_{in}} \rangle$, the weight  of $\varphi_i$ , $W_{\varphi_i} = \sum_{k=0}^{n} Wv_{\varphi_{ik}}$ .
106After this stage, we will check all the properties with weight $>0$ and allocate a supplementary weight of $3Wv_{1}$ for every variable at the interface present in the propery. After this process, the final weight of a property is obtained and the properties will be ordered in a list with the weight  decreasing (the heaviest first). We will refer to the ordered list of properties related to the global property $\phi$ as $L_\phi$.
107
108
109}
110
111\end{enumerate}
112
113%\bigskip
114
115\emph{\underline{Example:}}  \\
116
117For example, if a global property $\phi$ consists of 3 variables: $ p, q, r $ where:
118\begin{itemize}
119\item{$p$ is dependent of $a$ and $b$}
120\item{$b$ is dependent of $c$}
121\item{$q$ is dependent of $x$}
122\item{$r$ is independent}
123\end{itemize}
124
125Example with unit weight= 50.
126The primary variables: $p$, $q$ and $r$ are weighted $100x10=1000$ each. \\
127The secondary level variables : $a$, $b$ and $x$ are weighted $50x2=100$ each. \\
128The tertiary level variable $c$ is weighted $50$. \\
129The weight of a non-related variable is $0$.
130
131So each verified properties available pertinency will be evaluated by adding the weights of all the variables in it. It is definitely not an exact pertinency calculation of properties but provides a good indicator of their possible impact on the global property.
132
133\bigskip
134\begin{figure}[h!]
135   \centering
136%   \includegraphics[width=1.2\textwidth]{Dependency_graph_weight_PNG}
137%     \hspace*{-15mm}
138     \includegraphics{Dependency_graph_weight_PNG}
139   \caption{\label{DepGraphWeight} Example of weighting}
140\end{figure}
141
142%Dans la figure~\ref{étiquette} page~\pageref{étiquette},  
143
144
145
146After this pre-processing phase, we will have a list of properties $L_\phi  $ ordered according to their pertinency in comparison to the global property.
147
148
149
150
151\subsection{Initial abstraction generation}
152
153In the initial abstraction generation, all primary variables have to be represented. Therefore the first element(s) in the list where the primary variables are present will be used to generate the initial abstraction, $\widehat{M}_0$ and we will verify the satisfiability of the global property $\phi$ on this abstract model. If the model-checking failed and the counterexample given is found to be spurious, we will then proceed with the refinement process.
154
155
156
157\subsection{Abstraction refinement}
158
159The refinement process from $\widehat{M}_i$ to $\widehat{M}_{i+1}$ can be seperated into 2 steps:
160
161\begin{enumerate}
162
163\item {\emph{\underline{Step 1:}} \\
164
165As we would like to ensure the elimination of the counterexample previously found, we filter out properties that don't have an impact on the counterexample $\sigma_i$ thus won't eliminate it. In order to reach this obective, a Kripke Structure of the counterexample $\sigma_i$, $K(\sigma_i)$ is generated. $K(\sigma_i)$ is a succession of states corresponding to the counterexample path which dissatisfies the global property $\phi$.
166
167\bigskip
168
169\begin{definition}
170\textbf{\emph{The counterexample $\sigma_i$ Kripke Structure $K(\sigma_i)$ :}} \\
171Let a counterexample of length $n$, $ \sigma_i = \langle s_{\bar{a}i,0}, s_{\bar{a}i,1},\\ s_{\bar{a}i,2}, ... , s_{\bar{a}i,k}, s_{\bar{a}i,k+1}, ... , s_{\bar{a}i,n}\rangle $ with $ \forall k \in [0,n-1]$, we have \\
172$K(\sigma_i) = (AP_{\sigma_i}, S_{\sigma_i}, S_{0\sigma_i}, L_{\sigma_i}, R_{\sigma_i})$ a 5-tuple consisting of :
173
174\begin{itemize}
175\item { $AP_{\sigma_i}$ : a finite set of atomic propositions which corresponds to the variables in the abstract model $\widehat{V}_{i}$ }     
176\item { $S_{\sigma_i} = \{s_{\bar{a}i,0}, s_{\bar{a}i,1}, s_{\bar{a}i,2}, ... , s_{\bar{a}i,k}, s_{\bar{a}i,k+1}, ... , s_{\bar{a}i,n}\}$}
177\item { $S_{0\sigma_i} = \{s_{\bar{a}i,0}\}$}
178\item { $L_{\sigma_i}$ : $S_{\sigma_i} \rightarrow 2^{AP_{\sigma_i}}$ : a labeling function which labels each state with the set of atomic propositions true in that state. }
179\item { $R_{\sigma_i}$ = $ (s_{\bar{a}i,k}, s_{\bar{a}i,k+1})$ }
180\end{itemize}
181\end{definition}
182
183%\bigskip
184All the properties available are then model-checked on $K(\sigma_i)$.
185
186If:
187\begin{itemize}
188\item {\textbf{$K(\sigma_i) \vDash \varphi  \Rightarrow \varphi $ will not eliminate $\sigma_i$}}
189\item {\textbf{$K(\sigma_i) \nvDash \varphi  \Rightarrow \varphi $ will eliminate $\sigma_i$}}
190\end{itemize}
191
192%\bigskip
193
194
195\begin{figure}[h!]
196   \centering
197%   \includegraphics[width=1.2\textwidth]{K_sigma_i_S_PNG}
198%     \hspace*{-15mm}
199     \includegraphics{K_sigma_i_S_PNG}
200   \caption{\label{AKSNegCex} Kripke Structure of counterexample $\sigma_i$, $K(\sigma_i)$}
201\end{figure}
202
203%Dans la figure~\ref{étiquette} page~\pageref{étiquette},  
204
205%\bigskip
206
207
208\begin{figure}[h!]
209   \centering
210
211\begin{tikzpicture}[->,>=stealth',shorten >=1.5pt,auto,node distance=1.8cm,
212                    thick]
213  \tikzstyle{every state}=[fill=none,draw=blue,text=black]
214
215  \node[initial,state] (A)                            {$s_{\bar{a}i,0}$};
216  \node[state]           (B) [below of=A]     {$s_{\bar{a}i,1}$};
217
218  \node[state]           (C) [below of=B]        {$s_{\bar{a}i,k}$};
219
220  \node[state]           (D) [below of=C]       {$s_{\bar{a}i,n-1}$};
221  \node[state]           (E) [below of=D]       {$s_{\bar{a}i,n}$};
222
223  \path (A) edge              node {} (B)
224            (B) edge       node {} (C)
225            (C) edge             node {} (D)
226            (D) edge             node {} (E);
227
228\end{tikzpicture}
229
230   \caption{\label{AKSNegCex} Kripke Structure of counterexample $\sigma_i$, $K(\sigma_i)$}
231\end{figure}
232
233
234Therefore all properties that are satisfied won't be chosen to be integrated in the next step of refinement. At this stage, we already have a list of potential properties that will definitely eliminate the current counterexample $\sigma_i$ and might converge the abstract model towards a model sufficient to verify the global property $\phi$.
235
236}
237%\bigskip
238
239\item {\emph{\underline{Step 2:}} \\
240
241The property at the top of the list (not yet selected and excluding the properties which are satisfied by $K(\sigma_i)$) is selected to be integrated in the generation of $\widehat{M}_{i+1}$.
242%\bigskip
243
244}
245\end{enumerate}
246
247$\widehat{M}_{i+1}$ is model-checked and the refinement process is repeated until the model satisfies the global property or there is no property left to be integrated in next abstraction.
248
249
Note: See TracBrowser for help on using the repository browser.