Ignore:
Timestamp:
Mar 8, 2012, 2:00:31 PM (13 years ago)
Author:
cecile
Message:

add defintions concrete, and modify refinement, cex defintion

File:
1 edited

Legend:

Unmodified
Added
Removed
  • papers/FDL2012/abstraction_refinement.tex

    r52 r56  
    1 \subsection{Generalities}
    21
    32We suppose that our concrete model is a composition of several components and each component has been previously verified. Hence, we have a set of verified properties for each component of the concrete model. The main idea of this technique is that we would like to make use of these properties to generate a better abstract model. Properties of the components that appear to be related to the global property to be verified, $\phi$ are selected to generate the abstract model $\widehat{M}_i$. This method is particularly interesting as it gives a possibility to converge quicker to an abstract model that is sufficient to satisfy the global property $\phi$.
    43
    5 \subsubsection{Refinement}
    6 The model-checker provides a counterexample when a property failed during model-checking. The counterexample can be \emph{spurious} which means that the path is impossible in the concrete model $M$ or the counterexample is real which implies that $M \nvDash \phi $.When a counterexample is found to be spurious, it means that the current abstract model $\widehat{M}_i$ is too coarse and has to be refined. In this section, we will discuss about the refinement technique based on the integration of more verified properties of the concrete model's components in the abstract model to be generated. Moreover, the refinement step from $\widehat{M}_i$ to $\widehat{M}_{i+1}$ has to be conservative and respects the properties below:
     4\subsection{Properties of good refinement}
     5When a counterexample is found to be spurious, it means that the current abstract model $\widehat{M}_i$ is too coarse and has to be refined.
     6In this section, we will discuss about the refinement technique based on the integration of more verified properties of the concrete model's components in the abstract model to be generated. Moreover, the refinement step from $\widehat{M}_i$ to $\widehat{M}_{i+1}$ respects the properties below:
    77
    88%\medskip
    99
    1010\begin{property}
    11 All $\widehat{M}_i$ generated are upper-approximations of $M$. Furthermore, we guarantee that $\widehat{M}_{i+1} \sqsubseteq \widehat{M}_i$.
     11\begin{enumerate}
     12\item The new refinment is an over-approximation of the concrete model: $\widehat{M}_{i+1} \sqsubseteq \widehat{M}$.
     13\item The new refinment is more concrete than the previous one:
     14$\widehat{M}_{i} \sqsubseteq \widehat{M}_{i+1}$.
     15\item The spurious counter-example in $\widehat{M}_i$ is  removed from
     16$\widehat{M_{i+1}}$.
     17\end{enumerate}
    1218\end{property}
    13 %\bigskip
    14 \begin{property}
    15 $\sigma_i$ is a counterexample of $\widehat{M}_i$ and $\sigma_i$ is not a counterexample of $\widehat{M}_{i+1}$.
    16 \end{property}
    17 
    18 %\bigskip
    19 %\newpage
    20 
    21 \subsubsection{The Counterexample}
    22 
    23 
    24 The counterexample at a refinement step $i$, $\sigma_i$ is a path in the abstract model $\widehat{M}_i$ which dissatisfy $\phi$.  In the counterexample given by the model-checker, the variables' value in each states are boolean.
    25 %\medskip
    26 
     19
     20Moreover, the refinement steps should be easy to compute and ensure a fast
     21convergence by the minimizing the number of iteration of the CEGAR loop.
     22
     23
     24A possible refinement : concretization of selected abstract variables. How to choose variables and instants of concretization : introduce new CTL properties. The question is : how to select pertinent CTL properties ???
     25
     26\TODO{discussion sur comment garantir les points 1/2/3 et le reste du bon
     27rafinement}
     28\subsection{The Counterexample}
     29
     30\TODO{Mettre la def avant}
     31\TODO{Rafinement par négation du contre-exemple}
     32The counterexample at a refinement step $i$, $\sigma$ is a path in the
     33abstract model $\widehat{M}_i$ which dissatisfy $\Phi$.  In the counterexample given by the model-checker, the variables' value in each states are boolean.
     34The spurious counter-example $\sigma$ is defined such that :
    2735\begin{definition}
    28 \textbf{\emph{The counterexample $\sigma_i$ :}} \\
     36\textbf{\emph{The counterexample $\sigma$ :}} \\
    2937\\
    30 Let $\widehat{M}_i =(\widehat{AP}_i, \widehat{S}_i, \widehat{S}_{0i}, \widehat{L}_i, \widehat{R}_i, \widehat{F}_i)$ and let the length of the counterexample, $|\sigma_i| = n$: $ \sigma_i = \langle s_{\bar{a}i,0}, s_{\bar{a}i,1}, s_{\bar{a}i,2}, ... , s_{\bar{a}i,k},$ $s_{\bar{a}i,k+1}, ... , s_{\bar{a}i,n}\rangle $ with $ \forall k \in [0,n-1], ~s_{\bar{a}i,k} \subseteq s_{i,k}  \in \widehat{S}_i, ~s_{\bar{a}i,0} \subseteq s_{i,0} \in \widehat{S}_{0i}$ and $(s_{i,k}, s_{i,k+1}) \in \widehat{R}_i$. \\
    31 Furthermore, for each state in $\sigma_i$ we have $s_{\bar{a}i,k} = \langle v_{\bar{a}i,k}^1, v_{\bar{a}i,k}^2, ... ,  v_{\bar{a}i,k}^p, ... , v_{\bar{a}i,k}^q \rangle$, $\forall p \in [1,q], ~v_{\bar{a}i,k}^p \in \widehat{V}_{i,k}$ with $\widehat{V}_{i,k} \in 2^q$. \\
    32 \\
    33 (\emph{\underline{Note} :} In AKS $\widehat{M}_i$, the variables are actually 3-valued : $\widehat{V}_{i,k} \in 3^q$. We differenciate the 3-valued variables  $v_{i,k}^p$ from boolean variables with $v_{\bar{a}i,k}^p$.)\\
    34 
    35 %\medskip
    36 
     38Let $\widehat{M}_i =\langle \widehat{AP}_i, \widehat{S}_i, \widehat{S}_{0i},
     39\widehat{L}_i, \widehat{R}_i, \widehat{F}_i \rangle$ and let the length of the
     40counterexample, $|\sigma| = n$: $ \sigma = s_{0} \rightarrow s_{1} \ldots
     41s_{n}$ with $(s_{k}, s_{k+1}) \in \widehat{R}_i$ $\forall k \in [0..n-1]$.
     42\begin{itemize}
     43\item All its variables are concrete: $\forall s_i$ and $\forall p\in
     44\widehat{AP}_i$, $p$ is either true or false
     45(not {\it unknown}).
     46\item  $\sigma$ is a counter-example in  $\widehat{M}_i$: $s_0\not\models \Phi$.
     47\item  $\sigma$ is not a path of the concrete system $M$: $\exists k$ such
     48that $(s_{k}, s_{k+1}) \not\in R$.
    3749\end{definition}
    3850
    3951%\bigskip
    4052
    41 \begin{definition}
    42 \textbf{\emph{Spurious counterexample :}} \\
    43 \\
    44 Let $\sigma_c = \langle s_{c,0}, s_{c,1}, s_{c,2}, ... , s_{c,k}, s_{c,k+1}, ... , s_{c,n}\rangle$ a path of length $n$ in the concrete model $M$ and in each state of $\sigma_c$ we have $s_{c,k} = \langle v_{c,k}^1, v_{c,k}^2, ... ,  v_{c,k}^{p'}, ... , v_{c,k}^{q'} \rangle$ with $\forall p' \in [1,q'], ~v_{i,k}^{p'} \in V_{c,k}$ and $V_{c,k} \in 2^{q'}$.\\
    45 
    46 \smallskip
    47 
    48 If $\forall k$ we have $\widehat{V}_{i,k} \subseteq V_{c,k}$ and $\forall v_{\bar{a}i,k} \in \widehat{V}_{i,k}, ~s_{i,k}|_{v_{\bar{a}i,k}} = s_{c,k}|_{v_{c,k}} $ then $M \nvDash \phi$ else $\sigma_i$ is \emph{spurious}.
    49 
    50 \end{definition}
    51 
    52 
    53 
    54 \subsection{Pre-processing and pertinency ordering of properties}
     53%\begin{definition}
     54%\textbf{\emph{Spurious counterexample :}} \\
     55%\\
     56%Let $\sigma_c = \langle s_{c,0}, s_{c,1}, s_{c,2}, ... , s_{c,k}, s_{c,k+1}, ... , s_{c,n}\rangle$ a path of length $n$ in the concrete model $M$ and in each state of $\sigma_c$ we have $s_{c,k} = \langle v_{c,k}^1, v_{c,k}^2, ... ,  v_{c,k}^{p'}, ... , v_{c,k}^{q'} \rangle$ with $\forall p' \in [1,q'], ~v_{i,k}^{p'} \in V_{c,k}$ and $V_{c,k} \in 2^{q'}$.\\
     57%
     58%\smallskip
     59%
     60%If $\forall k$ we have $\widehat{V}_{i,k} \subseteq V_{c,k}$ and $\forall v_{\bar{a}i,k} \in \widehat{V}_{i,k}, ~s_{i,k}|_{v_{\bar{a}i,k}} = s_{c,k}|_{v_{c,k}} $ then $M \nvDash \phi$ else $\sigma_i$ is \emph{spurious}.
     61%
     62%\end{definition}
     63
     64
     65
     66\subsection{Ordering of properties}
    5567
    5668Before generating an abstract model to verify a global property $\phi$, the verified properties of all the components in the concrete model are ordered according to their pertinency in comparison to a global property $\phi$. In order to do so, the variable dependency of the variables present in global property $\phi$ has to be analysed. After this point, we refer to the variables present in the global property $\phi$ as \emph{primary variables}.
Note: See TracChangeset for help on using the changeset viewer.