Changeset 75 for papers/FDL2012/introduction.tex
- Timestamp:
- Mar 27, 2012, 5:24:35 PM (13 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
papers/FDL2012/introduction.tex
r74 r75 8 8 9 9 10 In this research we would like to contribute in the improvement of the model-checking technique through the combination of the compositional method and the abstraction-refinement procedure which would allow the verification of complex structured systems and cope with the state space explosion phenomenon. Till now, compositional analysis and abstraction-refinement procedure have been essentially explored seperately, hence the desire to investigate the potential of the combination of these two techniques. The research will lead to a proposal of a development and verification process based on association of several components.10 In this research we would like to contribute to the improvement of the model-checking technique through the combination of the compositional method and the abstraction-refinement procedure which would allow the verification of complex structured systems and cope with the state space explosion phenomenon. Till now, compositional analysis and abstraction-refinement procedure have been essentially explored seperately, hence the desire to investigate the potential of the combination of these two techniques. The research will lead to a proposal of a development and verification process based on association of several components. In this paper we present a strategy to exploit the properties of verified component in the goal of verifying complex systems with a good initial abstraction and eventually being conclusive in minimal refinement iterations. 11 11 12 12 13 \subsection{Related Works}14 13 %\subsection{Related Works} 14 \emph{Related Works:} 15 15 We are inspired by the compositional strategy is based on the assume-guarantee reasoning where assumptions are made on other components of the systems when verifying one component. In other words, we show that a component $C_1$ guarantees certain properties $P_1$ on the hypothesis that component $C_2$ provides certain properties $P_2$ and vice-versa for $C_2$. If that's the case, then we can claim that the composition of $C_1$ and $C_2$, both executed in parallel and may interact with each other, guarantees the properties $P_1$ and $P_2$ unconditionally. Several works have manipulated this technique notably in \cite{GrumbergLong91assume_guarantee} where Grumberg and Long described the methodology using a subset of CTL in their framework and later in \cite{HQR98assume_guarantee} where Herzinger and al. presented their successful implementations and case study regarding this approach. 16 16 … … 41 41 42 42 43 In the next section, we will give an overview of our framework and introduce the notations that will be used later. The rest of the paper is organized as follows: section 3 details our strategy of refinement. Section 4 presents the experimentation results and finally, section 5 draws the conclusions. 43 %\subsection{Contribution} 44 \emph{Contribution :} In this paper we present a strategy to exploit the properties of verified component in the goal of verifying complex systems with a good initial abstraction and eventually being conclusive in minimal refinement iterations. 44 45 46 In the next section, we will give an overview of our framework and introduce the notations that will be used later. The rest of the paper is organized as follows: section 3 details our strategy of refinement. Section 4 presents the experimentation results and finally, section 5 draws the conclusions and summarize our possible future works. 47
Note: See TracChangeset
for help on using the changeset viewer.