Ignore:
Timestamp:
Mar 30, 2012, 5:02:20 PM (13 years ago)
Author:
cecile
Message:

correction counter-example and its negation representation

File:
1 edited

Legend:

Unmodified
Added
Removed
  • papers/FDL2012/abstraction_refinement.tex

    r76 r79  
    3030
    3131The counterexample at a refinement step $i$, $\sigma$, is a path in the
    32 abstract model $\widehat{M}_i$ which dissatisfies $\Phi$.  In the counterexample given by the model-checker, the variable configuration in each state is boolean.
     32abstract model $\widehat{M}_i$ which dissatisfies $\Phi$.  In the
     33counterexample given by the model-checker, the variable configuration in each
     34state is boolean. We name $\check{L_i}$ this new labeling.
    3335The spurious counterexample $\sigma$ is defined such that :
    3436\begin{definition}
    3537Let $\sigma$ be a \emph{counter-example} in $\widehat{M}_i =\langle \widehat{AP}_i, \widehat{S}_i, \widehat{S}_{0i},
    36 \widehat{L}_i, \widehat{R}_i, \widehat{F}_i \rangle$ of  length$|\sigma| = n$: $ \sigma = s_{0} \rightarrow s_{1} \ldots
     38\widehat{L}_i, \widehat{R}_i, \widehat{F}_i \rangle$ of  length $|\sigma| = n$: $ \sigma = s_{0} \rightarrow s_{1} \ldots
    3739\rightarrow s_{n}$ with $(s_{k}, s_{k+1}) \in \widehat{R}_i$ $\forall k \in [0..n-1]$.
    3840\begin{itemize}
    3941\item All its variables are concrete: $\forall s_i$ and $\forall p\in
    40 \widehat{AP}_i$, $p$ is either true or false
     42\widehat{AP}_i$, $p$ is either true or false according to $\check{L_i}$.
    4143(not {\it unknown}), and $s_0 $ is an initial state of the concrete system: $s_0 \in \mathbf{R}_0$
    4244\item  $\sigma$ is a counterexample in  $\widehat{M}_i$: $s_0\not\models \Phi$.
     
    4547\end{itemize}
    4648\end{definition}
    47 
     49In the following we denote by
    4850The construction of the AKS representing all executions except the one described by the spurious counter-example is done in two steps.
    4951\subsubsection{step 1 : Build the structure of the AKS.}
    50 Let us denote $AKS(\overline{\sigma})$ this AKS. $AKS(\overline{\sigma}) = \langle \widehat{AP}_{\overline{\sigma}}, \widehat{S}_{\overline{\sigma}}, \widehat{S}_{0{\overline{\sigma}}},
    51 \widehat{L}_{\overline{\sigma}}, \widehat{R}_{\overline{\sigma}}, \widehat{F}_{\overline{\sigma}} \rangle$.
     52
     53\begin{definition}
     54Let $\sigma$ be a counter-example of  length $|\sigma| = n$, the \emph{ AKS of the
     55counter-example negation} $AKS(\overline{\sigma}) = \langle \widehat{AP}_{\overline{\sigma}}, \widehat{S}_{\overline{\sigma}}, \widehat{S}_{0{\overline{\sigma}}},
     56\widehat{L}_{\overline{\sigma}}, \widehat{R}_{\overline{\sigma}},
     57\widehat{F}_{\overline{\sigma}} \rangle$ is such that :
    5258\begin{itemize}
    53 \item The set of atomic propositions coincides with the one of $\sigma$ : $AP_{\overline{\sigma}} = {AP}_i$
    54 \item Build a state $s_T$, and for each state $s_i$ in $\sigma$, build two states $s'_i$ and $s"_i$.  $s_T \in S_{\overline{\sigma}}$ and forall $i$ in $[0..n-1]$ : $s'_i \in S_{\overline{\sigma}}$ and $s"_i \in S_{\overline{\sigma}}.$
    55 \item State labeling : $s'_i$ represents the (concrete) configuration of state $s_i$ and state $s"_i$  represents all configurations but the one of $s_i$. This last set may not be representable by the labeling function defined in def \ref{def-aks}. State labeling is treated in the second step.
    56 \item States $s'_0$ and $s"_0$ are initial states.
    57 \item Transitions : Forall $i$ in $[1..n-1]$, connect $s'_i$ and $s"_i$ to their predecessor state $s'_{i-1}$: $(s'_{i-1},s'_i) \in R_{\overline{\sigma}}$ and $(s'_{i-1},s"_i) \in R_{\overline{\sigma}}$ and connect all $s"$ states as predecessor of the $s_T$ state : $(s"_i,s_T) \in R_{\overline{\sigma}}$.
    58 \item \TODO{FAIRNESS}
     59\item $AP_{\overline{\sigma}} = {AP}_i$:
     60The set of atomic propositions coincides with the one of $\sigma$
     61\item $\widehat{S}_{\overline{\sigma}}$: $\{s_T\} \cup \{s_{i}'|\forall i`in
     62[0..n-2] \vee s_i\in
     63\sigma\}\cup \{\bar{s_{i}}|\forall i in [0..n-1] \vee s_i\in \sigma\}$
     64\item $\widehat{L}_{\overline{\sigma}}$ is such that $s_i'$ represents the
     65(concrete) configuration of state $s_i$ and state $\bar{s_i}$  represents all
     66configurations but the one of $s_i$. This last set may not be representable by
     67the labeling function defined in def \ref{def-aks}. State labeling is treated
     68in the second step. $s_t$ is a state where all atomic propositions are {\it unknown}.
     69
     70\item $\widehat{S}_{0{\overline{\sigma}}} = \{ s_0',\bar{s_0}\}$
     71\item $\widehat{R}_{\overline{\sigma}} = \{(\bar{s_i},s_T), \forall i\in
     72[0..n-1]\} \cup \{(s_i',\bar{s_{i+1}}), \forall i\in[0..n-2]\} \cup
     73\{(s_i',s_{i+1}',\forall  i\in[0..n-3]\}$
     74
     75\item $\widehat{F}_{\overline{\sigma}} = \emptyset$
    5976\end{itemize}
     77\end{definition}
    6078The size of this structure is linear with the size of the counter-example, however it is not a strict AKS since the representation of the set of configurations in states $s"$ may lead to a union of labels.
    6179
Note: See TracChangeset for help on using the changeset viewer.