Changeset 79 for papers/FDL2012/abstraction_refinement.tex
- Timestamp:
- Mar 30, 2012, 5:02:20 PM (13 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
papers/FDL2012/abstraction_refinement.tex
r76 r79 30 30 31 31 The counterexample at a refinement step $i$, $\sigma$, is a path in the 32 abstract model $\widehat{M}_i$ which dissatisfies $\Phi$. In the counterexample given by the model-checker, the variable configuration in each state is boolean. 32 abstract model $\widehat{M}_i$ which dissatisfies $\Phi$. In the 33 counterexample given by the model-checker, the variable configuration in each 34 state is boolean. We name $\check{L_i}$ this new labeling. 33 35 The spurious counterexample $\sigma$ is defined such that : 34 36 \begin{definition} 35 37 Let $\sigma$ be a \emph{counter-example} in $\widehat{M}_i =\langle \widehat{AP}_i, \widehat{S}_i, \widehat{S}_{0i}, 36 \widehat{L}_i, \widehat{R}_i, \widehat{F}_i \rangle$ of length $|\sigma| = n$: $ \sigma = s_{0} \rightarrow s_{1} \ldots38 \widehat{L}_i, \widehat{R}_i, \widehat{F}_i \rangle$ of length $|\sigma| = n$: $ \sigma = s_{0} \rightarrow s_{1} \ldots 37 39 \rightarrow s_{n}$ with $(s_{k}, s_{k+1}) \in \widehat{R}_i$ $\forall k \in [0..n-1]$. 38 40 \begin{itemize} 39 41 \item All its variables are concrete: $\forall s_i$ and $\forall p\in 40 \widehat{AP}_i$, $p$ is either true or false 42 \widehat{AP}_i$, $p$ is either true or false according to $\check{L_i}$. 41 43 (not {\it unknown}), and $s_0 $ is an initial state of the concrete system: $s_0 \in \mathbf{R}_0$ 42 44 \item $\sigma$ is a counterexample in $\widehat{M}_i$: $s_0\not\models \Phi$. … … 45 47 \end{itemize} 46 48 \end{definition} 47 49 In the following we denote by 48 50 The construction of the AKS representing all executions except the one described by the spurious counter-example is done in two steps. 49 51 \subsubsection{step 1 : Build the structure of the AKS.} 50 Let us denote $AKS(\overline{\sigma})$ this AKS. $AKS(\overline{\sigma}) = \langle \widehat{AP}_{\overline{\sigma}}, \widehat{S}_{\overline{\sigma}}, \widehat{S}_{0{\overline{\sigma}}}, 51 \widehat{L}_{\overline{\sigma}}, \widehat{R}_{\overline{\sigma}}, \widehat{F}_{\overline{\sigma}} \rangle$. 52 53 \begin{definition} 54 Let $\sigma$ be a counter-example of length $|\sigma| = n$, the \emph{ AKS of the 55 counter-example negation} $AKS(\overline{\sigma}) = \langle \widehat{AP}_{\overline{\sigma}}, \widehat{S}_{\overline{\sigma}}, \widehat{S}_{0{\overline{\sigma}}}, 56 \widehat{L}_{\overline{\sigma}}, \widehat{R}_{\overline{\sigma}}, 57 \widehat{F}_{\overline{\sigma}} \rangle$ is such that : 52 58 \begin{itemize} 53 \item The set of atomic propositions coincides with the one of $\sigma$ : $AP_{\overline{\sigma}} = {AP}_i$ 54 \item Build a state $s_T$, and for each state $s_i$ in $\sigma$, build two states $s'_i$ and $s"_i$. $s_T \in S_{\overline{\sigma}}$ and forall $i$ in $[0..n-1]$ : $s'_i \in S_{\overline{\sigma}}$ and $s"_i \in S_{\overline{\sigma}}.$ 55 \item State labeling : $s'_i$ represents the (concrete) configuration of state $s_i$ and state $s"_i$ represents all configurations but the one of $s_i$. This last set may not be representable by the labeling function defined in def \ref{def-aks}. State labeling is treated in the second step. 56 \item States $s'_0$ and $s"_0$ are initial states. 57 \item Transitions : Forall $i$ in $[1..n-1]$, connect $s'_i$ and $s"_i$ to their predecessor state $s'_{i-1}$: $(s'_{i-1},s'_i) \in R_{\overline{\sigma}}$ and $(s'_{i-1},s"_i) \in R_{\overline{\sigma}}$ and connect all $s"$ states as predecessor of the $s_T$ state : $(s"_i,s_T) \in R_{\overline{\sigma}}$. 58 \item \TODO{FAIRNESS} 59 \item $AP_{\overline{\sigma}} = {AP}_i$: 60 The set of atomic propositions coincides with the one of $\sigma$ 61 \item $\widehat{S}_{\overline{\sigma}}$: $\{s_T\} \cup \{s_{i}'|\forall i`in 62 [0..n-2] \vee s_i\in 63 \sigma\}\cup \{\bar{s_{i}}|\forall i in [0..n-1] \vee s_i\in \sigma\}$ 64 \item $\widehat{L}_{\overline{\sigma}}$ is such that $s_i'$ represents the 65 (concrete) configuration of state $s_i$ and state $\bar{s_i}$ represents all 66 configurations but the one of $s_i$. This last set may not be representable by 67 the labeling function defined in def \ref{def-aks}. State labeling is treated 68 in the second step. $s_t$ is a state where all atomic propositions are {\it unknown}. 69 70 \item $\widehat{S}_{0{\overline{\sigma}}} = \{ s_0',\bar{s_0}\}$ 71 \item $\widehat{R}_{\overline{\sigma}} = \{(\bar{s_i},s_T), \forall i\in 72 [0..n-1]\} \cup \{(s_i',\bar{s_{i+1}}), \forall i\in[0..n-2]\} \cup 73 \{(s_i',s_{i+1}',\forall i\in[0..n-3]\}$ 74 75 \item $\widehat{F}_{\overline{\sigma}} = \emptyset$ 59 76 \end{itemize} 77 \end{definition} 60 78 The size of this structure is linear with the size of the counter-example, however it is not a strict AKS since the representation of the set of configurations in states $s"$ may lead to a union of labels. 61 79
Note: See TracChangeset
for help on using the changeset viewer.