Ignore:
Timestamp:
Apr 4, 2012, 2:01:08 PM (13 years ago)
Author:
syed
Message:

/papers/FDL2012

File:
1 edited

Legend:

Unmodified
Added
Removed
  • papers/FDL2012/exp_results.tex

    r75 r80  
    1 We have conducted preliminary experiments to tests and compare the performance of our strategy with existing abstraction-refinement technique available in VIS. As our test platforms requires fairness constraints, we have chosen the \emph{incremental\_ctl\_verification} abstraction refinement technique as it supports CTL formulas and fairness constraints \cite{PardoHachtel98incremCTLMC} \cite{PardoHachtel97autoAbsMC}. It is an automatic abstraction refinement algorithm which generates an initial conservative abstraction principally by reducing the size of the latches by a constant factor. If the initial abstraction is not conclusive, a \emph{goal set} will then be computed in order to guide the refinement process.
     1We have conducted preliminary experiments to tests and compare the performance of our strategy with existing abstraction-refinement technique available in VIS. There several abstraction-refinement techniques implemented in VIS accessible via \emph{approximate\_model\_check}, \emph{iterative\_model\_check}, \emph{check\_invariant} and \emph{incremental\_ctl\_model\_check} commands. However, among the techniques available, \emph{incremental\_ctl\_model\_check} is the only abstraction-refinement technique that supports CTL formulas and fairness constraints which are necessary in our test platforms. It is an automatic abstraction refinement algorithm which generates an initial conservative abstraction principally by reducing the size of the latches by a constant factor. If the initial abstraction is not conclusive, a \emph{goal set} will then be computed in order to guide the refinement process \cite{PardoHachtel98incremCTLMC} \cite{PardoHachtel97autoAbsMC}.
     2
    23
    34We have executed and compared the execution time and the number of refinement iterations for two examples: VCI-PI platform consisting of Virtual Component Interface (VCI), a PI-Bus and VCI-PI protocol converter and a simplified version of a CAN bus platform consisting of 3 nodes on a CAN bus. Table \ref{StatsVCI_PI} and Table \ref{StatsCAN_Bus} give the size and the statistics concerning the VCI-PI platform and CAN bus platform respectively. All the values are obtained using the \emph{compute\_reach} command with option \emph{-v 1} in VIS except the number of BDD variables, computed using the \emph{print\_bdd\_stats} command. The experiments have been executed on a PC with an AMD Athlon dual-core processor 4450e and 1.8GB of RAM memory.
    45
     6
    57\begin{table*} [ht]
    6 \hspace*{10mm}
    7 \begin{tabular}{clccccc}
     8\hspace*{17mm}
     9\begin{tabular}{clcccc}
    810
    911\toprule
    10 \multicolumn{2}{c}{\textbf{VCI-PI}}   & \emph{Number of}      & \emph{FSM}    & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\
    11 \multicolumn{2}{c}{\textbf{Platform}} &\emph{BDD Variables}  & \emph{Depth} & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
     12\multicolumn{2}{c}{\textbf{VCI-PI}}   & \emph{Number of}      & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\
     13\multicolumn{2}{c}{\textbf{Platform}} &\emph{BDD Variables}  & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
    1214\midrule
    1315\midrule
    14                & 1 Master-1 Slave   & 308 & 599 & 33 442   & 3.64116e+06 & 41.49 \\
    15  Concrete      & 2 Masters-1 Slave  & 439 & 186 & 75 210   & 7.3282e+04  & 14.36 \\
    16   Model        & 4 Masters-1 Slave  & 709 & 408 & 156 657  & 2.15076e+07 & 414.38 \\
    17                & 4 Masters-2 Slaves & 883 & 597 & 217 797  & 3.22215e+10 & 4064.09 \\
     16               & 1 Master-1 Slave   & 308 & 33 442   & 3.64116e+06 & 41.49 \\
     17 Concrete      & 2 Masters-1 Slave  & 453  & 140297   & 2.42518e+11 & 1922.75 \\
     18  Model        & 4 Masters-1 Slave  & 737  & N/A      & N/A         & >3days \\
     19               & 4 Masters-2 Slaves & 911  & N/A      & N/A         & >3days \\
    1820 \midrule
    1921 \midrule
    20  Final         & 1 Master-1 Slave   & 197 & 2  &  76   &  5.03316e+07  & 0.01 \\
    21  Abstract      & 2 Masters-1 Slave  & 301 & 2  &  99   &  4.12317e+11  & 0.02 \\
    22  Model         & 4 Masters-1 Slave  & 501 & 2  & 147   &  3.45876e+18  & 0.03\\
    23  for $\phi_1$  & 4 Masters-2 Slaves & 589 & 2  & 167   &  7.08355e+21  & 0.04 \\
     22 Final         & 1 Master-1 Slave   & 197 &  76   &  5.03316e+07  & 0.01 \\
     23 Abstract      & 2 Masters-1 Slave  & 301 &  99   &  4.12317e+11  & 0.02 \\
     24 Model         & 4 Masters-1 Slave  & 501 & 147   &  3.45876e+18  & 0.03\\
     25 for $\phi_1$  & 4 Masters-2 Slaves & 589 & 167   &  7.08355e+21  & 0.04 \\
    2426\midrule
    25  Final         & 1 Master-1 Slave   & 194 & 1  & 50    &  2.62144e+07  & 0 \\
    26  Abstract      & 2 Masters-1 Slave  & 298 & 1  & 73    &  2.14748e+11  & 0.01 \\
    27  Model         & 4 Masters-1 Slave  & 498 & 1  & 121   &  1.80144e+18  & 0.02 \\
    28  for $\phi_2$  & 4 Masters-2 Slaves & 586 & 1  & 141   &  3.68935e+21  & 0.02 \\
     27 Final         & 1 Master-1 Slave   & 194 & 50    &  2.62144e+07  & 0 \\
     28 Abstract      & 2 Masters-1 Slave  & 298 & 73    &  2.14748e+11  & 0.01 \\
     29 Model         & 4 Masters-1 Slave  & 498 & 121   &  1.80144e+18  & 0.02 \\
     30 for $\phi_2$  & 4 Masters-2 Slaves & 586 & 141   &  3.68935e+21  & 0.02 \\
    2931\bottomrule 
    3032\bottomrule
     
    3638
    3739
     40
    3841\begin{table*} [ht]
    39 \hspace*{12mm}
    40 \begin{tabular}{cccccc}
     42\hspace*{15mm}
     43\begin{tabular}{ccccc}
    4144
    4245\toprule
    43 \textbf{CAN Bus}      & \emph{Number of}      & \emph{FSM}    & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\
    44 \textbf{Platform}     &\emph{BDD Variables}  & \emph{Depth}  & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
     46\textbf{CAN Bus}      & \emph{Number of}      & \emph{BDD}  & \emph{Number of }       & \emph{Analysis}\\
     47\textbf{Platform}     &\emph{BDD Variables}    & \emph{Size} & \emph{Reachable States} & \emph{Time (s)} \\
    4548\midrule
    4649\midrule
    47  Concrete Model   & 838     & 182     & 212550    & 2.87296e+08      & 167.9 \\     
     50 Concrete Model                     & 822     & 140586      & 3.7354e+07     & 294.6 \\     
    4851 \midrule
    4952 \midrule
    50  Final Abstract Model for $\phi_1$  & xx  & 2   & xxx   &  xxx       & xxxx \\
     53 Final Abstract Model for $\phi_1$  & 425   & 187   &  1.66005e+12       & 0.03 \\
    5154\midrule
    52  Final Abstract Model for $\phi_2$  & xx  & 2   & xxx   &  xxx       & xxxx \\
     55 Final Abstract Model for $\phi_2$  & 425   & 187   &  1.66005e+12       & 0.04 \\
    5356\bottomrule 
    5457\bottomrule
     
    5760\caption{\label{StatsCAN_Bus} Statistics on the CAN Bus platform}
    5861\end{table*}
     62
     63
    5964
    6065
     
    8085\multicolumn{4}{l}{\textbf{\underline{2 Masters - 1 Slave :}}}   \\   
    8186                 & Prop. Selection   & 1    &    2.0     \\
    82  $\phi_1$   & Incremental       & 0    &    1.3        \\
    83             & Standard MC       & -    &    1.5     \\
     87 $\phi_1$   & Incremental       & 0    &  107.7        \\
     88            & Standard MC       & -    & 1181.8     \\
    8489\midrule
    8590                 & Prop. Selection   & 0    &    1.0    \\
    86  $\phi_2$   & Incremental       & 0    &   15.3       \\
    87                  & Standard MC       & -    &   14.6    \\
     91 $\phi_2$   & Incremental       & 0    &  108.5       \\
     92                 & Standard MC       & -    & 1103.3   \\
    8893\midrule
    8994\midrule 
    9095\multicolumn{4}{l}{\textbf{\underline{4 Masters - 1 Slave :}}}   \\
    9196                 & Prop. Selection   & 1    &    2.1     \\
    92  $\phi_1$   & Incremental       & 0    &    6.8        \\
    93             & Standard MC       & -    &  175.5     \\
     97 $\phi_1$   & Incremental       & N/A  & >3 days        \\
     98            & Standard MC       & -    & >3 days     \\
    9499\midrule
    95100                 & Prop. Selection   &  0    &   1.0 \\
    96  $\phi_2$   & Incremental       &  0    &   7.5    \\
    97                  & Standard MC       &  -    & 195.1 \\
     101 $\phi_2$   & Incremental       &  N/A  &  >3 days   \\
     102                 & Standard MC       &  -    & >3 days \\
    98103\midrule
    99104\midrule
    100105\multicolumn{4}{l}{\textbf{\underline{4 Masters - 2 Slaves :}}}  \\
    101106                                & Prop. Selection   & 1   &  2.2     \\
    102  $\phi_1$   & Incremental       & N/A &  >1 day    \\
    103             & Standard MC       & -   &  2231.3    \\
     107 $\phi_1$   & Incremental       & N/A &  >3 days    \\
     108            & Standard MC       & -   &  >3 days   \\
    104109\midrule
    105110            & Prop. Selection   & 0   &  1.1\\
    106  $\phi_2$   & Incremental       & N/A &  >1 day    \\
    107             & Standard MC       & -   &  12814.1 \\
     111 $\phi_2$   & Incremental       & N/A &  >3 days    \\
     112            & Standard MC       & -   &  >3 days\\
    108113\bottomrule       
    109114\bottomrule
     
    126131\midrule
    127132\midrule
    128                  & Prop. Selection  &  xxx        &  xxx     \\
    129  $\phi_3$   & Incremental      & N/A            &  >1 day \\
    130                  & Standard MC      & -                         &  51.9    \\
     133                 & Prop. Selection  &  0          &  1.02     \\
     134 $\phi_3$   & Incremental      & N/A            &  N/A \\
     135                 & Standard MC      & -                         &  N/A    \\
    131136\midrule
    132                  & Prop. Selection   &  xxx       &  xxx \\
    133  $\phi_4$   & Incremental       & 0          &   57.3     \\
    134                  & Standard MC       & -          &    2.2    \\
     137                 & Prop. Selection   &  0         &   1.01\\
     138 $\phi_4$   & Incremental       & N/A        &   N/A     \\
     139                 & Standard MC       & -          &   N/A    \\
    135140\bottomrule
    136141
     
    142147
    143148
    144 In the following tables: Table \ref{TabVCI_PI} and Table \ref{TabCANBus}, we compare the execution time between our technique (Prop. Selection), incremental\_ctl\_verification (Incremental) and the standard model checking (Standard MC) computed using the \emph{model\_check} command in VIS (Note: Dynamic variable ordering has been enabled with sift method). For the VCI-PI platform, the global property $\phi_1$ is the type $AF((p=1)*AF(q=1))$ and $\phi_2$ is actually a stronger version of the same formula with $AG(AF((p=1)*AF(q=1)))$ whereas for the CAN bus platform, the global property $\phi_3$ is the type $AG(((p'=1)*(q'=1)) -> AF((s = 1)*(r = 1))$ and $\phi_4 = AG(((p'=1)*(q'=1)) -> AG(r' = 0))$. We can see that our technique systematically computes faster than the other two methods and interestingly in the case where the size of the platform increases by adding the more connected components, in contrary to the other two methods, our computation time remains stable.
     149In the following tables: Table \ref{TabVCI_PI} and Table \ref{TabCANBus}, we compare the execution time between our technique (Prop. Selection), incremental\_ctl\_verification (Incremental) and the standard model checking (Standard MC) computed using the \emph{model\_check} command in VIS (Note: Dynamic variable ordering has been enabled with sift method). For the VCI-PI platform, the global property $\phi_1$ is the type $AF((p=1)*AF(q=1))$ and $\phi_2$ is actually a stronger version of the same formula with $AG(AF((p=1)*AF(q=1)))$. We have a total of 42 verifed components properties to be selected in VCI-PI plateform and for the verification of $\phi_1$ we have restrained the selectable properties only to those without AG prefix. In comparison to $\phi_2$, we can see that, a better set of properties available will result in a better abstraction and less refinement iterations. 
     150
     151
     152In the case of the CAN bus platform, the global property $\phi_3$ is the type $AG(((p'=1)*(q'=1)*AF(r_1=1)) -> AF((s_1=1)*AF(t_1=1)))$ and $\phi_4 = AG(((p'=1)*(q'=1)*AG(r_2=0)) -> AG((s_2=0)*(t_2=0)))$. We have at our disposal 103 verified component properties and after the selection process, 3 selected component properties were sufficient to verify both global properties.
     153
     154Globally, we can see that our technique systematically computes faster than the other two methods and interestingly in the case where the size of the platform increases by adding the more connected components, in contrary to the other two methods, our computation time remains stable.
    145155
    146156
Note: See TracChangeset for help on using the changeset viewer.