Changeset 92 for papers/FDL2012/framework.tex
- Timestamp:
- Apr 6, 2012, 10:37:41 PM (13 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
papers/FDL2012/framework.tex
r89 r92 43 43 % \includegraphics[width=1.2\textwidth]{our_CEGAR_Loop_Enhanced_2S_PNG} 44 44 % \hspace*{-5mm} 45 \includegraphics {our_framework_cegar_png}45 \includegraphics[scale=0.37]{our_framework_cegar_png} 46 46 \caption{\label{cegar} Verification Process } 47 47 \end{figure} 48 48 49 \vspace*{-5mm} 49 50 \subsection{Concrete system definition} 50 51 As mentioned earlier, our concrete model consists of several components and each … … 54 55 \begin{definition} 55 56 A \emph{Moore machine} $C$ is defined by a tuple $\langle I, O, R,$ $\delta, \lambda, \mathbf{R}_0 \rangle$, where, 56 \begin{itemize} 57 \vspace*{-2mm} 58 \begin{itemize} 59 %\partopsep= -1.0em 60 %\topsep -0.5em 61 \itemsep -0.3em 57 62 \item $I$ is a finite set of Boolean inputs signals. 58 63 \item $O$ is a finite set of Boolean outputs signals. … … 104 109 $AP$, An \emph{Abstract Kripke Structure}, $AKS(\varphi) =(AP, \widehat{S}, \widehat{S}_0, \widehat{L}, \widehat{R}, \widehat{F})$ is a 6-tuple consisting of: 105 110 106 \begin{itemize} 111 \vspace*{-3mm} 112 \begin{itemize} 113 %\partopsep=0pt 114 %\topsep 0pt 115 \itemsep -0.3em 107 116 \item { $AP$ : The finite set of atomic propositions of property $\varphi$ } 108 117 \item { $\widehat{S}$ : a finite set of states} … … 116 125 %\bigskip 117 126 127 \vspace*{-2mm} 118 128 We denote by $\widehat{L}(s)$ the configuration of atomic propositions in state $s$ and by $\widehat{L}(s)[p]$ the projection of configuration $\widehat{L}(s)$ according to atomic proposition $p$. 119 129 … … 129 139 let $C_j$ be a component of the concrete model $M$ and $\varphi_{j}^k$ is a CTL formula describing a satisfied property of component $C_j$. Let $AKS (\varphi_{C_j^k})$ the AKS generated from $\varphi_j^k$. We have $\forall j \in [1,n]$ and $\forall k \in [1,m]$: 130 140 131 \begin{itemize} 141 \vspace*{-3mm} 142 \begin{itemize} 143 %\topsep 0pt 144 \itemsep -0.3em 132 145 \item{$ \widehat{C}_j = AKS (\varphi_{C_j^1}) ~||~ AKS (\varphi_{C_j^2} ) ~||~...~||~ AKS (\varphi_{C_j^k}) ~||$\\ $ ...~||~ AKS (\varphi_{C_j^m}) $} 133 146 \item{$ \widehat{M} = \widehat{C}_1 ~||~ \widehat{C}_2 ~||~ ... ~||~ \widehat{C}_j ~||~... ~||~ \widehat{C}_n $} … … 137 150 138 151 139 The generation of an abstract model in the form of AKS from CTL formulas is described in \cite{braunstein07ctl_abstraction} and has been implemented (\cite{bara08abs_composant}).152 %The generation of an abstract model in the form of AKS from CTL formulas is described in \cite{braunstein07ctl_abstraction} and has been implemented (\cite{bara08abs_composant}). 140 153 141 154 … … 154 167 \begin{definition}[] 155 168 The \emph {concretization} of an abstract state $s$ with respect to the variable $p$ 156 ({\it unknown} in that state), assigns either true or false to $p$. 157 169 ({\it unknown} in that state), assigns either true or false to $p$.\\ 158 170 The \emph {abstraction} of a state $s$ with respect to the variable $p$ 159 171 (either true or false in that state), assigns {\it unknown} to $p$. … … 188 200 {\it and} to the four-valued values of variables in $s_i$ and $s_{\varphi_j^k}$. For all $p \in 189 201 AP_i \cup AP_{\varphi_j^k}$ we have the following label~: 190 \begin{itemize} 191 \topsep -.5em 192 \itemsep -0.5em 202 \vspace*{-2mm} 203 \begin{itemize} 204 %\topsep 0pt 205 \itemsep -0.3em 193 206 \item $\widehat{L}_{i+1}[p] = \top$ iff p is {\it unknown} in both states or 194 207 does not belong to the set of atomic proposition. … … 197 210 (resp. $s_{\varphi_j^k}$). 198 211 \end{itemize} 212 \vspace*{-2mm} 199 213 By property \ref{prop:concrete}, $\widehat{M}_{i+1}$ is more concrete than 200 214 $\widehat{M}_i$ and by … … 203 217 \end{proof} 204 218 219 \vspace*{-5mm} 205 220 \subsection{Initial abstraction} 206 221 Given a global property $\Phi$, the property to be verified by the composition of the concrete components model, an abstract model is generated by selecting some of the properties of the components which are relevant to $\Phi$.
Note: See TracChangeset
for help on using the changeset viewer.