Ignore:
Timestamp:
Apr 6, 2012, 10:37:41 PM (13 years ago)
Author:
syed
Message:

/papers/FDL2012/

File:
1 edited

Legend:

Unmodified
Added
Removed
  • papers/FDL2012/framework.tex

    r89 r92  
    4343%   \includegraphics[width=1.2\textwidth]{our_CEGAR_Loop_Enhanced_2S_PNG}
    4444%     \hspace*{-5mm}
    45      \includegraphics{our_framework_cegar_png}
     45     \includegraphics[scale=0.37]{our_framework_cegar_png}
    4646   \caption{\label{cegar} Verification Process }
    4747\end{figure}
    4848
     49\vspace*{-5mm}
    4950\subsection{Concrete system definition}
    5051As mentioned earlier, our concrete model consists of several components and each
     
    5455\begin{definition}
    5556A \emph{Moore machine} $C$ is defined by a tuple $\langle I, O, R,$ $\delta, \lambda, \mathbf{R}_0 \rangle$, where,
    56 \begin{itemize}
     57\vspace*{-2mm}
     58\begin{itemize}
     59%\partopsep= -1.0em
     60%\topsep -0.5em
     61\itemsep -0.3em
    5762\item $I$ is a finite set of Boolean inputs signals.
    5863\item $O$ is a finite set of Boolean outputs signals.
     
    104109$AP$, An \emph{Abstract Kripke Structure}, $AKS(\varphi) =(AP, \widehat{S}, \widehat{S}_0, \widehat{L}, \widehat{R}, \widehat{F})$ is a 6-tuple consisting of:
    105110
    106 \begin{itemize}
     111\vspace*{-3mm}
     112\begin{itemize}
     113%\partopsep=0pt
     114%\topsep 0pt
     115\itemsep -0.3em
    107116\item { $AP$ : The finite set of atomic propositions of property $\varphi$ }   
    108117\item { $\widehat{S}$ : a finite set of states}
     
    116125%\bigskip
    117126
     127\vspace*{-2mm}
    118128We denote by $\widehat{L}(s)$ the configuration of atomic propositions in state $s$ and by $\widehat{L}(s)[p]$ the projection of configuration $\widehat{L}(s)$ according to atomic proposition $p$.
    119129
     
    129139let $C_j$ be a component of the concrete model $M$ and $\varphi_{j}^k$ is a CTL formula describing a satisfied property of component $C_j$. Let $AKS (\varphi_{C_j^k})$ the AKS generated from $\varphi_j^k$. We have $\forall j \in [1,n]$ and $\forall k \in [1,m]$:
    130140
    131 \begin{itemize}
     141\vspace*{-3mm}
     142\begin{itemize}
     143%\topsep 0pt
     144\itemsep -0.3em
    132145\item{$ \widehat{C}_j = AKS (\varphi_{C_j^1}) ~||~ AKS (\varphi_{C_j^2} ) ~||~...~||~ AKS (\varphi_{C_j^k}) ~||$\\ $ ...~||~ AKS (\varphi_{C_j^m}) $}
    133146\item{$ \widehat{M} = \widehat{C}_1 ~||~ \widehat{C}_2 ~||~ ... ~||~ \widehat{C}_j ~||~... ~||~ \widehat{C}_n $}
     
    137150
    138151
    139 The generation of an abstract model in the form of AKS from CTL formulas is described in \cite{braunstein07ctl_abstraction} and has been implemented (\cite{bara08abs_composant}).
     152%The generation of an abstract model in the form of AKS from CTL formulas is described in \cite{braunstein07ctl_abstraction} and has been implemented (\cite{bara08abs_composant}).
    140153
    141154
     
    154167\begin{definition}[]
    155168The \emph {concretization} of an abstract state $s$ with respect to the variable $p$
    156 ({\it unknown} in that state), assigns either true or false to $p$.
    157 
     169({\it unknown} in that state), assigns either true or false to $p$.\\
    158170The \emph {abstraction} of a state $s$ with respect to the variable $p$
    159171(either true or false in that state), assigns  {\it unknown} to $p$.
     
    188200{\it and} to the  four-valued values of variables in $s_i$ and $s_{\varphi_j^k}$. For all $p \in
    189201AP_i \cup AP_{\varphi_j^k}$ we have the following label~:
    190 \begin{itemize}
    191 \topsep -.5em
    192 \itemsep -0.5em
     202\vspace*{-2mm}
     203\begin{itemize}
     204%\topsep 0pt
     205\itemsep -0.3em
    193206\item  $\widehat{L}_{i+1}[p] = \top$ iff  p is {\it unknown} in both states or
    194207does not belong to the set of atomic proposition.
     
    197210(resp. $s_{\varphi_j^k}$).
    198211\end{itemize}
     212\vspace*{-2mm}
    199213By property \ref{prop:concrete}, $\widehat{M}_{i+1}$ is more concrete than
    200214$\widehat{M}_i$ and by
     
    203217\end{proof}
    204218
     219\vspace*{-5mm}
    205220\subsection{Initial abstraction}
    206221Given a global property $\Phi$, the property to be verified by the composition of the concrete components model, an abstract model is generated by selecting some of the properties of the components which are relevant to $\Phi$.
Note: See TracChangeset for help on using the changeset viewer.