source: soft/giet_vm/giet_boot/boot.c @ 791

Last change on this file since 791 was 791, checked in by meunier, 8 years ago
  • Added function realloc
  • Started to put the bootloader on 2 Big Pages (warning: does not work yet)
  • Fixed errors in the rosenfeld application
File size: 72.2 KB
RevLine 
[527]1///////////////////////////////////////////////////////////////////////////////////
[258]2// File     : boot.c
3// Date     : 01/11/2013
4// Author   : alain greiner
5// Copyright (c) UPMC-LIP6
[527]6///////////////////////////////////////////////////////////////////////////////////
[493]7// The boot.c file contains the bootloader for the GIET-VM static OS. 
[258]8//
[493]9// This code has been written for the MIPS32 processor.
[359]10// The virtual adresses are on 32 bits and use the (unsigned int) type. The
[527]11// physicals addresses can have up to 40 bits, and use type (unsigned long long).
[412]12// It natively supports clusterised shared memory multi-processors architectures,
[493]13// where each processor is identified by a composite index [x,y,p],
[258]14// and where there is one physical memory bank per cluster.
15//
[493]16// The boot.elf file is stored on disk and is loaded into memory by proc[0,0,0],
17// executing the generic preloader (stored in ROM). The boot-loader code itself
18// is executed in parallel by all proc[x,y,0], and performs the following tasks:
19// - load into memory various binary files, from a FAT32 file system.
20// - build the various page tables (one page table per vspace).
21// - initialize the shedulers (one scheduler per processor).
[258]22//
23// 1) The binary files to be loaded are:
[631]24//    - the "map.bin" file contains the hardware architecture description,
25//      the set of user applications that will be mapped on the architecture,
[709]26//      and the mapping directives. The mapping includes the placement of threads
[631]27//      on processors, and the placement of virtual segments on the physical
[709]28//      segments. It is stored in the the seg_boot_mapping segment
[321]29//      (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file).
[493]30//    - the "kernel.elf" file contains the kernel binary code and data.
[258]31//    - the various "application.elf" files.
32//
[732]33// 2) The GIET-VM uses the paged virtual memory to provide two services:
[258]34//    - classical memory protection, when several independant applications compiled
35//      in different virtual spaces are executing on the same hardware platform.
[412]36//    - data placement in NUMA architectures, to control the placement
37//      of the software objects (vsegs) on the physical memory banks (psegs).
[527]38//    The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter.
[709]39//    The page tables are statically build in the boot phase, and they do not
40//    change during execution.
41//    For each application, the page tables are replicated in all clusters.
[412]42//    The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes).
[527]43//    Each page table (one page table per virtual space) is monolithic, and
44//    contains one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each).
[631]45//    For each vspace, the max number of PT2s is defined by the size of the PTAB
46//    vseg in the mapping.
[527]47//    The PT1 is indexed by the ix1 field (11 bits) of the VPN. An entry is 32 bits.
48//    A PT2 is indexed the ix2 field (9 bits) of the VPN. An entry is 64 bits.
[412]49//    The first word contains the flags, the second word contains the PPN.
[631]50//
51// 3) The Giet-VM implement one private scheduler per processor.
[709]52//    For each application, the threads are statically allocated to processors
53//    and there is no thread migration during execution.
54//    Each sheduler occupies 8K bytes, and contains up to 14 thread contexts
55//    The thread context [13] is reserved for the "idle" thread that does nothing,
56//    and is launched by the scheduler when there is no other runable thread.
[527]57///////////////////////////////////////////////////////////////////////////////////
[263]58// Implementation Notes:
59//
[527]60// 1) The cluster_id variable is a linear index in the mapping_info array.
[493]61//    The cluster_xy variable is the tological index = x << Y_WIDTH + y
[412]62//
[493]63// 2) We set the _tty0_boot_mode variable to force the _printf() function to use
64//    the tty0_spin_lock for exclusive access to TTY0.
[527]65///////////////////////////////////////////////////////////////////////////////////
[258]66
[263]67#include <giet_config.h>
[464]68#include <hard_config.h>
[436]69#include <mapping_info.h>
[464]70#include <kernel_malloc.h>
[258]71#include <memspace.h>
72#include <tty_driver.h>
73#include <xcu_driver.h>
[347]74#include <bdv_driver.h>
[460]75#include <hba_driver.h>
[527]76#include <sdc_driver.h>
[258]77#include <cma_driver.h>
78#include <nic_driver.h>
[299]79#include <iob_driver.h>
[295]80#include <pic_driver.h>
[258]81#include <mwr_driver.h>
[527]82#include <dma_driver.h>
[631]83#include <mmc_driver.h>
[258]84#include <ctx_handler.h>
85#include <irq_handler.h>
86#include <vmem.h>
[412]87#include <pmem.h>
[258]88#include <utils.h>
[460]89#include <tty0.h>
[493]90#include <kernel_locks.h>
91#include <kernel_barriers.h>
[258]92#include <elf-types.h>
93#include <fat32.h>
94#include <mips32_registers.h>
95#include <stdarg.h>
96
[263]97#if !defined(X_SIZE)
[359]98# error: The X_SIZE value must be defined in the 'hard_config.h' file !
[258]99#endif
100
[263]101#if !defined(Y_SIZE)
[359]102# error: The Y_SIZE value must be defined in the 'hard_config.h' file !
[263]103#endif
104
105#if !defined(X_WIDTH)
[359]106# error: The X_WIDTH value must be defined in the 'hard_config.h' file !
[263]107#endif
108
109#if !defined(Y_WIDTH)
[359]110# error: The Y_WIDTH value must be defined in the 'hard_config.h' file !
[263]111#endif
112
[321]113#if !defined(SEG_BOOT_MAPPING_BASE)
[359]114# error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file !
[321]115#endif
116
[359]117#if !defined(NB_PROCS_MAX)
118# error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file !
[321]119#endif
120
[359]121#if !defined(GIET_NB_VSPACE_MAX)
122# error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file !
[321]123#endif
124
[359]125#if !defined(GIET_ELF_BUFFER_SIZE)
126# error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file !
[258]127#endif
128
129////////////////////////////////////////////////////////////////////////////
130//      Global variables for boot code
131////////////////////////////////////////////////////////////////////////////
132
[412]133// Temporaty buffer used to load one complete .elf file 
[493]134__attribute__((section(".kdata")))
[757]135unsigned char       _boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(64)));
[258]136
[412]137// Physical memory allocators array (one per cluster)
[493]138__attribute__((section(".kdata")))
[757]139pmem_alloc_t        _boot_pmem_alloc[X_SIZE][Y_SIZE];
[258]140
[412]141// Schedulers virtual base addresses array (one per processor)
[493]142__attribute__((section(".kdata")))
143static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX];
[258]144
[527]145// Page tables virtual base addresses (one per vspace and per cluster)
[493]146__attribute__((section(".kdata")))
147unsigned int        _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
[258]148
[412]149// Page tables physical base addresses (one per vspace and per cluster)
[493]150__attribute__((section(".kdata")))
[757]151unsigned long long  _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
[258]152
[412]153// Page tables pt2 allocators (one per vspace and per cluster)
[493]154__attribute__((section(".kdata")))
155unsigned int        _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
[263]156
[412]157// Page tables max_pt2  (same value for all page tables)
[493]158__attribute__((section(".kdata")))
159unsigned int        _ptabs_max_pt2;
[412]160
[493]161// boot code uses a spin lock to protect TTY0
162__attribute__((section(".kdata")))
163unsigned int        _tty0_boot_mode = 1;
[490]164
[716]165// boot code does not uses a lock to protect HBA command list
[493]166__attribute__((section(".kdata")))
[578]167unsigned int        _hba_boot_mode = 1;
168
[709]169// required for concurrent PTAB building
[578]170__attribute__((section(".kdata")))
[493]171spin_lock_t         _ptabs_spin_lock[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE];
[490]172
[493]173// barrier used by boot code for parallel execution
174__attribute__((section(".kdata")))
175simple_barrier_t    _barrier_all_clusters;
[490]176
[527]177//////////////////////////////////////////////////////////////////////////////
178//        Extern variables
179//////////////////////////////////////////////////////////////////////////////
180
[631]181// this variable is allocated in the tty0.c file
[493]182extern spin_lock_t  _tty0_spin_lock;
[464]183
[631]184// this variable is allocated in the mmc_driver.c
185extern unsigned int _mmc_boot_mode;
186
[716]187// these variables are allocated in the bdv_driver.c file
188extern spin_lock_t  _bdv_lock __attribute__((aligned(64)));
189extern unsigned int _bdv_trdid;
190extern unsigned int _bdv_status;
191
[527]192extern void boot_entry();
193
[412]194////////////////////////////////////////////////////////////////////////////////////
[258]195// Align the value of paddr or vaddr to the required alignement,
196// defined by alignPow2 == L2(alignement).
[412]197////////////////////////////////////////////////////////////////////////////////////
[493]198paddr_t paddr_align_to( paddr_t paddr, unsigned int alignPow2 ) 
[258]199{
200    paddr_t mask = (1 << alignPow2) - 1;
201    return ((paddr + mask) & ~mask);
202}
203
[493]204unsigned int vaddr_align_to( unsigned int vaddr, unsigned int alignPow2 ) 
[258]205{
206    unsigned int mask = (1 << alignPow2) - 1;
207    return ((vaddr + mask) & ~mask);
208}
209
[412]210/////////////////////////////////////////////////////////////////////////////////////
211// This function map a vseg identified by the vseg pointer.
212//
[493]213// A given vseg can be mapped in a Big Physical Pages (BPP: 2 Mbytes) or in a
[732]214// Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg.
[412]215//
[732]216// All boot vsegs are packed in a single BPP (2 Mbytes). For all other vsegs,
217// there is only one vseg in a given page (BPP or SPP), but a single vseg can
218// cover several contiguous physical pages.
219// Only the vsegs used by the boot code can be identity mapping.
220//
[513]221// 1) First step: it computes various vseg attributes and checks
222//    alignment constraints.
[412]223//
[493]224// 2) Second step: it allocates the required number of contiguous physical pages,
[412]225//    computes the physical base address (if the vseg is not identity mapping),
[732]226//    register it in the vseg pbase field, and update the page table(s).
[412]227//
[732]228// 3) Third step (only for vseg that have the VSEG_TYPE_PTAB): for a given cluster,
229//    the M page tables associated to the M vspaces are packed in the same vseg.
[493]230//    We divide this vseg in M sub-segments, and compute the vbase and pbase
231//    addresses for M page tables, and register these addresses in the _ptabs_paddr
[412]232//    and _ptabs_vaddr arrays.
233/////////////////////////////////////////////////////////////////////////////////////
[427]234void boot_vseg_map( mapping_vseg_t* vseg,
235                    unsigned int    vspace_id )
[258]236{
[412]237    mapping_header_t*   header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
238    mapping_cluster_t*  cluster = _get_cluster_base(header);
239    mapping_pseg_t*     pseg    = _get_pseg_base(header);
[258]240
[513]241    //////////// First step : compute vseg attributes
242
[412]243    // compute destination cluster pointer & coordinates
244    pseg    = pseg + vseg->psegid;
245    cluster = cluster + pseg->clusterid;
246    unsigned int        x_dest     = cluster->x;
247    unsigned int        y_dest     = cluster->y;
[258]248
[412]249    // compute the "big" vseg attribute
250    unsigned int        big = vseg->big;
[258]251
[513]252    // all vsegs must be aligned on 4Kbytes
253    if ( vseg->vbase & 0x00000FFF ) 
254    {
255        _printf("\n[BOOT ERROR] vseg %s not aligned : vbase = %x\n", 
256                vseg->name, vseg->vbase );
257        _exit();
258    }
259
[412]260    // compute the "is_ram" vseg attribute
261    unsigned int        is_ram;
262    if ( pseg->type == PSEG_TYPE_RAM )  is_ram = 1;
263    else                                is_ram = 0;
[258]264
[412]265    // compute the "is_ptab" attribute
266    unsigned int        is_ptab;
[513]267    if ( vseg->type == VSEG_TYPE_PTAB ) is_ptab = 1;
268    else                                is_ptab = 0;
[258]269
[427]270    // compute actual vspace index
271    unsigned int vsid;
272    if ( vspace_id == 0xFFFFFFFF ) vsid = 0;
273    else                           vsid = vspace_id;
274
[412]275    //////////// Second step : compute ppn and npages 
276    //////////// - if identity mapping :  ppn <= vpn
277    //////////// - if vseg is periph   :  ppn <= pseg.base >> 12
278    //////////// - if vseg is ram      :  ppn <= physical memory allocator
[258]279
[493]280    unsigned int ppn;          // first physical page index (28 bits = |x|y|bppi|sppi|)
281    unsigned int vpn;          // first virtual page index  (20 bits = |ix1|ix2|)
282    unsigned int vpn_max;      // last  virtual page index  (20 bits = |ix1|ix2|)
[258]283
[412]284    vpn     = vseg->vbase >> 12;
285    vpn_max = (vseg->vbase + vseg->length - 1) >> 12;
[258]286
[412]287    // compute npages
288    unsigned int npages;       // number of required (big or small) pages
289    if ( big == 0 ) npages  = vpn_max - vpn + 1;            // number of small pages
290    else            npages  = (vpn_max>>9) - (vpn>>9) + 1;  // number of big pages
291
292    // compute ppn
[732]293    if ( vseg->ident )           // identity mapping : no memory allocation required
[258]294    {
[412]295        ppn = vpn;
[258]296    }
[412]297    else                         // not identity mapping
[258]298    {
[412]299        if ( is_ram )            // RAM : physical memory allocation required
[258]300        {
[412]301            // compute pointer on physical memory allocator in dest cluster
[757]302            pmem_alloc_t*     palloc = &_boot_pmem_alloc[x_dest][y_dest];
[258]303
[732]304            if ( big == 0 )      // allocate contiguous SPPs
[412]305            {
306                ppn = _get_small_ppn( palloc, npages );
307            }
[732]308            else                 // allocate contiguous BPPs
[412]309            {
[732]310                ppn = _get_big_ppn( palloc, npages ); 
[412]311            }
[258]312        }
[412]313        else                    // PERI : no memory allocation required
[258]314        {
[412]315            ppn = pseg->base >> 12;
[258]316        }
317    }
318
[732]319    // update vseg.pbase field and register vseg mapped
[412]320    vseg->pbase     = ((paddr_t)ppn) << 12;
[493]321    vseg->mapped    = 1;
[258]322
[412]323    //////////// Third step : (only if the vseg is a page table)
324    //////////// - compute the physical & virtual base address for each vspace
325    ////////////   by dividing the vseg in several sub-segments.
326    //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays,
[427]327    ////////////   and initialize next_pt2 allocators.
328    //////////// - reset all entries in first level page tables
[412]329   
330    if ( is_ptab )
[258]331    {
[412]332        unsigned int   vs;        // vspace index
333        unsigned int   nspaces;   // number of vspaces
334        unsigned int   nsp;       // number of small pages for one PTAB
335        unsigned int   offset;    // address offset for current PTAB
[258]336
[412]337        nspaces = header->vspaces;
338        offset  = 0;
[258]339
[757]340        // compute max_pt2: each PTAB must be aligned on a 8 Kbytes boundary
[427]341        nsp = ( vseg->length >> 12 ) / nspaces;
[412]342        if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1;
343        _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE;
[433]344
[757]345        // save max_pt2 in header
346        header->max_pt2 = _ptabs_max_pt2;
347
[412]348        for ( vs = 0 ; vs < nspaces ; vs++ )
[258]349        {
[433]350            _ptabs_vaddr   [vs][x_dest][y_dest] = (vpn + offset) << 12;
[412]351            _ptabs_paddr   [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12;
352            _ptabs_next_pt2[vs][x_dest][y_dest] = 0;
[427]353            offset += nsp;
[433]354
[427]355            // reset all entries in PT1 (8 Kbytes)
356            _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 );
[258]357        }
358    }
359
[493]360    asm volatile ("sync");
361
[412]362#if BOOT_DEBUG_PT
[493]363if ( big )
364_printf("\n[BOOT] vseg %s : cluster[%d,%d] / "
365       "vbase = %x / length = %x / BIG    / npages = %d / pbase = %l\n",
366       vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase );
367else
368_printf("\n[BOOT] vseg %s : cluster[%d,%d] / "
369        "vbase = %x / length = %x / SMALL / npages = %d / pbase = %l\n",
370       vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase );
[412]371#endif
372
373} // end boot_vseg_map()
374
375/////////////////////////////////////////////////////////////////////////////////////
[493]376// For the vseg defined by the vseg pointer, this function register PTEs
[412]377// in one or several page tables.
[436]378// It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF).
[412]379// The number of involved PTABs depends on the "local" and "global" attributes:
380//  - PTEs are replicated in all vspaces for a global vseg.
[493]381//  - PTEs are replicated in all clusters containing procs for a non local vseg.
[412]382/////////////////////////////////////////////////////////////////////////////////////
[427]383void boot_vseg_pte( mapping_vseg_t*  vseg,
384                    unsigned int     vspace_id )
[412]385{
386    // compute the "global" vseg attribute and actual vspace index
387    unsigned int        global;
388    unsigned int        vsid;   
389    if ( vspace_id == 0xFFFFFFFF )
[258]390    {
[412]391        global = 1;
392        vsid   = 0;
[258]393    }
[412]394    else
[258]395    {
[412]396        global = 0;
397        vsid   = vspace_id;
[258]398    }
399
[412]400    // compute the "local" and "big" attributes
401    unsigned int        local  = vseg->local;
402    unsigned int        big    = vseg->big;
[258]403
[412]404    // compute vseg flags
[493]405    // The three flags (Local, Remote and Dirty) are set to 1
406    // to avoid hardware update for these flags, because GIET_VM
407    // does use these flags.
[412]408    unsigned int flags = 0;
409    if (vseg->mode & C_MODE_MASK) flags |= PTE_C;
410    if (vseg->mode & X_MODE_MASK) flags |= PTE_X;
411    if (vseg->mode & W_MODE_MASK) flags |= PTE_W;
412    if (vseg->mode & U_MODE_MASK) flags |= PTE_U;
413    if ( global )                 flags |= PTE_G;
414                                  flags |= PTE_L;
415                                  flags |= PTE_R;
416                                  flags |= PTE_D;
[258]417
[412]418    // compute VPN, PPN and number of pages (big or small)
419    unsigned int vpn     = vseg->vbase >> 12;
420    unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12;
421    unsigned int ppn     = (unsigned int)(vseg->pbase >> 12);
422    unsigned int npages;
423    if ( big == 0 ) npages  = vpn_max - vpn + 1;           
424    else            npages  = (vpn_max>>9) - (vpn>>9) + 1; 
425
[493]426    // compute destination cluster coordinates, for local vsegs
427    mapping_header_t*   header       = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
428    mapping_cluster_t*  cluster      = _get_cluster_base(header);
429    mapping_pseg_t*     pseg         = _get_pseg_base(header);
430    mapping_pseg_t*     pseg_dest    = &pseg[vseg->psegid];
431    mapping_cluster_t*  cluster_dest = &cluster[pseg_dest->clusterid];
432    unsigned int        x_dest       = cluster_dest->x;
433    unsigned int        y_dest       = cluster_dest->y;
[412]434
[493]435    unsigned int p;           // iterator for physical page index
436    unsigned int x;           // iterator for cluster x coordinate 
437    unsigned int y;           // iterator for cluster y coordinate 
438    unsigned int v;           // iterator for vspace index
[412]439
440    // loop on PTEs
441    for ( p = 0 ; p < npages ; p++ )
442    { 
443        if  ( (local != 0) && (global == 0) )         // one cluster  / one vspace
[258]444        {
[412]445            if ( big )   // big pages => PTE1s
446            {
[757]447                _v2p_add_pte1( vsid,
[412]448                               x_dest,
449                               y_dest,
450                               vpn + (p<<9),
451                               flags, 
[732]452                               ppn + (p<<9),
453                               vseg->ident );
[412]454            }
455            else         // small pages => PTE2s
456            {
[757]457                _v2p_add_pte2( vsid,
[412]458                               x_dest,
459                               y_dest,
460                               vpn + p,     
461                               flags, 
[732]462                               ppn + p,
463                               vseg->ident );
[412]464            }
[258]465        }
[412]466        else if ( (local == 0) && (global == 0) )     // all clusters / one vspace
[258]467        {
[412]468            for ( x = 0 ; x < X_SIZE ; x++ )
[258]469            {
[412]470                for ( y = 0 ; y < Y_SIZE ; y++ )
471                {
[493]472                    if ( cluster[(x * Y_SIZE) + y].procs )
[412]473                    {
[493]474                        if ( big )   // big pages => PTE1s
475                        {
[757]476                            _v2p_add_pte1( vsid,
[493]477                                           x,
478                                           y,
479                                           vpn + (p<<9),
480                                           flags, 
[732]481                                           ppn + (p<<9),
482                                           vseg->ident );
[493]483                        }
484                        else         // small pages => PTE2s
485                        {
[757]486                            _v2p_add_pte2( vsid,
[493]487                                           x,
488                                           y,
489                                           vpn + p,
490                                           flags, 
[732]491                                           ppn + p,
492                                           vseg->ident );
[493]493                        }
[412]494                    }
495                }
[258]496            }
[412]497        }
498        else if ( (local != 0) && (global != 0) )     // one cluster  / all vspaces
499        {
500            for ( v = 0 ; v < header->vspaces ; v++ )
[258]501            {
[412]502                if ( big )   // big pages => PTE1s
503                {
[757]504                    _v2p_add_pte1( v,
[412]505                                   x_dest,
506                                   y_dest,
507                                   vpn + (p<<9),
508                                   flags, 
[732]509                                   ppn + (p<<9),
510                                   vseg->ident );
[412]511                }
512                else         // small pages = PTE2s
513                { 
[757]514                    _v2p_add_pte2( v,
[412]515                                   x_dest,
516                                   y_dest,
517                                   vpn + p,
518                                   flags, 
[732]519                                   ppn + p,
520                                   vseg->ident );
[412]521                }
[258]522            }
[412]523        }
524        else if ( (local == 0) && (global != 0) )     // all clusters / all vspaces
525        {
526            for ( x = 0 ; x < X_SIZE ; x++ )
[258]527            {
[412]528                for ( y = 0 ; y < Y_SIZE ; y++ )
529                {
[493]530                    if ( cluster[(x * Y_SIZE) + y].procs )
[412]531                    {
[493]532                        for ( v = 0 ; v < header->vspaces ; v++ )
[412]533                        {
[493]534                            if ( big )  // big pages => PTE1s
535                            {
[757]536                                _v2p_add_pte1( v,
[493]537                                               x,
538                                               y,
539                                               vpn + (p<<9),
540                                               flags, 
[732]541                                               ppn + (p<<9),
542                                               vseg->ident );
[493]543                            }
544                            else        // small pages -> PTE2s
545                            {
[757]546                                _v2p_add_pte2( v,
[493]547                                               x,
548                                               y,
549                                               vpn + p,
550                                               flags, 
[732]551                                               ppn + p,
552                                               vseg->ident );
[493]553                            }
[412]554                        }
555                    }
556                }
[258]557            }
558        }
[412]559    }  // end for pages
[493]560
561    asm volatile ("sync");
562
[427]563}  // end boot_vseg_pte()
[258]564
[493]565
[412]566///////////////////////////////////////////////////////////////////////////////
[493]567// This function is executed by  processor[x][y][0] in each cluster
568// containing at least one processor.
569// It initialises all page table for all global or private vsegs
570// mapped in cluster[x][y], as specified in the mapping.
[412]571// In each cluster all page tables for the different vspaces must be
572// packed in one vseg occupying one single BPP (Big Physical Page).
[490]573//
[412]574// For each vseg, the mapping is done in two steps:
[436]575// 1) mapping : the boot_vseg_map() function allocates contiguous BPPs
[412]576//    or SPPs (if the vseg is not associated to a peripheral), and register
577//    the physical base address in the vseg pbase field. It initialises the
[493]578//    _ptabs_vaddr[] and _ptabs_paddr[] arrays if the vseg is a PTAB.
[412]579//
[436]580// 2) page table initialisation : the boot_vseg_pte() function initialise
[412]581//    the PTEs (both PTE1 and PTE2) in one or several page tables:
582//    - PTEs are replicated in all vspaces for a global vseg.
583//    - PTEs are replicated in all clusters for a non local vseg.
584//
585// We must handle vsegs in the following order
[493]586//   1) global vseg containing PTAB mapped in cluster[x][y],
587//   2) global vsegs occupying more than one BPP mapped in cluster[x][y],
588//   3) others global vsegs mapped in cluster[x][y],
589//   4) all private vsegs in all user spaces mapped in cluster[x][y].
[412]590///////////////////////////////////////////////////////////////////////////////
[493]591void boot_ptab_init( unsigned int cx,
592                     unsigned int cy ) 
[258]593{
[412]594    mapping_header_t*   header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
595    mapping_vspace_t*   vspace = _get_vspace_base(header);
596    mapping_vseg_t*     vseg   = _get_vseg_base(header);
[490]597    mapping_cluster_t*  cluster ;
598    mapping_pseg_t*     pseg    ;
[258]599
600    unsigned int vspace_id;
601    unsigned int vseg_id;
602
[490]603    unsigned int procid     = _get_procid();
604    unsigned int lpid       = procid & ((1<<P_WIDTH)-1);
605
[493]606    if( lpid )
[490]607    {
[493]608        _printf("\n[BOOT ERROR] in boot_ptab_init() : "
609                "P[%d][%d][%d] should not execute it\n", cx, cy, lpid );
[490]610        _exit();
611    } 
612
[493]613    if ( header->vspaces == 0 )
[258]614    {
[493]615        _printf("\n[BOOT ERROR] in boot_ptab_init() : "
616                "mapping %s contains no vspace\n", header->name );
[258]617        _exit();
618    }
619
[493]620    ///////// Phase 1 : global vseg containing the PTAB (two barriers required)
[412]621
[513]622    // get PTAB global vseg in cluster(cx,cy)
[493]623    unsigned int found = 0;
[412]624    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
625    {
[490]626        pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
627        cluster = _get_cluster_base(header) + pseg->clusterid;
[513]628        if ( (vseg[vseg_id].type == VSEG_TYPE_PTAB) && 
[493]629             (cluster->x == cx) && (cluster->y == cy) )
[412]630        {
[493]631            found = 1;
632            break;
[412]633        }
634    }
[493]635    if ( found == 0 )
[258]636    {
[493]637        _printf("\n[BOOT ERROR] in boot_ptab_init() : "
638                "cluster[%d][%d] contains no PTAB vseg\n", cx , cy );
639        _exit();
[258]640    }
641
[493]642    boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
[490]643
[493]644    //////////////////////////////////////////////
645    _simple_barrier_wait( &_barrier_all_clusters );
646    //////////////////////////////////////////////
[412]647
[493]648    boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
[412]649
[493]650    //////////////////////////////////////////////
651    _simple_barrier_wait( &_barrier_all_clusters );
652    //////////////////////////////////////////////
653
654    ///////// Phase 2 : global vsegs occupying more than one BPP
655
[258]656    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
657    {
[490]658        pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
659        cluster = _get_cluster_base(header) + pseg->clusterid;
[513]660        if ( (vseg[vseg_id].length > 0x200000) &&
[490]661             (vseg[vseg_id].mapped == 0) &&
[493]662             (cluster->x == cx) && (cluster->y == cy) )
[412]663        {
[427]664            boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
665            boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
[412]666        }
[258]667    }
668
[493]669    ///////// Phase 3 : all others global vsegs
[347]670
[412]671    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
[493]672    { 
[490]673        pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
674        cluster = _get_cluster_base(header) + pseg->clusterid;
[493]675        if ( (vseg[vseg_id].mapped == 0) && 
676             (cluster->x == cx) && (cluster->y == cy) )
[412]677        {
[427]678            boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
679            boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
[412]680        }
681    }
682
[493]683    ///////// Phase 4 : all private vsegs
[412]684
[258]685    for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) 
686    {
687        for (vseg_id = vspace[vspace_id].vseg_offset;
688             vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs);
689             vseg_id++) 
690        {
[757]691            if ( vseg[vseg_id].type == VSEG_TYPE_MMAP )  // no static mapping
[490]692            {
[757]693                // psegid used as page allocator in MMAP vseg
694                vseg[vseg_id].psegid = 0;
[490]695            }
[757]696            else                                         // static mapping
697            {
698                pseg    = _get_pseg_base(header) + vseg[vseg_id].psegid;
699                cluster = _get_cluster_base(header) + pseg->clusterid;
700                if ( (cluster->x == cx) && (cluster->y == cy) )
701                {
702                    boot_vseg_map( &vseg[vseg_id], vspace_id );
703                    boot_vseg_pte( &vseg[vseg_id], vspace_id );
704                }
705            }
[258]706        }
707    }
708
[493]709    //////////////////////////////////////////////
710    _simple_barrier_wait( &_barrier_all_clusters );
711    //////////////////////////////////////////////
[258]712
[493]713} // end boot_ptab_init()
[258]714
[493]715////////////////////////////////////////////////////////////////////////////////
[791]716// This function should be executed by P[0][0][0] only. It completes the
[493]717// page table initialisation, taking care of all global vsegs that are
718// not mapped in a cluster containing a processor, and have not been
719// handled by the boot_ptab_init(x,y) function.
720// An example of such vsegs are the external peripherals in TSAR_LETI platform.
721////////////////////////////////////////////////////////////////////////////////
722void boot_ptab_extend()
[258]723{
724
[493]725    mapping_header_t*   header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
726    mapping_vseg_t*     vseg   = _get_vseg_base(header);
[258]727
[493]728    unsigned int vseg_id;
729
730    for (vseg_id = 0; vseg_id < header->globals; vseg_id++) 
[258]731    {
[493]732        if ( vseg[vseg_id].mapped == 0 ) 
[258]733        {
[493]734            boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF );
735            boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF );
[452]736        }
737    }
[493]738}  // end boot_ptab_extend()
[258]739
740///////////////////////////////////////////////////////////////////////////////
741// This function returns in the vbase and length buffers the virtual base
742// address and the length of the  segment allocated to the schedulers array
743// in the cluster defined by the clusterid argument.
744///////////////////////////////////////////////////////////////////////////////
745void boot_get_sched_vaddr( unsigned int  cluster_id,
746                           unsigned int* vbase, 
747                           unsigned int* length )
748{
[321]749    mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
[258]750    mapping_vseg_t*   vseg   = _get_vseg_base(header);
751    mapping_pseg_t*   pseg   = _get_pseg_base(header);
752
753    unsigned int vseg_id;
754    unsigned int found = 0;
755
756    for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ )
757    {
[513]758        if ( (vseg[vseg_id].type == VSEG_TYPE_SCHED) && 
[263]759             (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) )
[258]760        {
761            *vbase  = vseg[vseg_id].vbase;
[513]762            *length = vseg[vseg_id].length;
[258]763            found = 1;
764        }
765    }
766    if ( found == 0 )
767    {
[263]768        mapping_cluster_t* cluster = _get_cluster_base(header);
[513]769        _printf("\n[BOOT ERROR] No vseg of type SCHED in cluster [%d,%d]\n",
[493]770                cluster[cluster_id].x, cluster[cluster_id].y );
[258]771        _exit();
772    }
773} // end boot_get_sched_vaddr()
774
[527]775#if BOOT_DEBUG_SCHED
776/////////////////////////////////////////////////////////////////////////////
777// This debug function should be executed by only one procesor.
778// It loops on all processors in all clusters to display
779// the HWI / PTI / WTI interrupt vectors for each processor.
780/////////////////////////////////////////////////////////////////////////////
781void boot_sched_irq_display()
782{
783    unsigned int         cx;
784    unsigned int         cy;
785    unsigned int         lpid;
786    unsigned int         slot;
787    unsigned int         entry;
[564]788    unsigned int         type;
789    unsigned int         channel;
[527]790
791    mapping_header_t*    header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
792    mapping_cluster_t*   cluster = _get_cluster_base(header);
793
794    static_scheduler_t*  psched; 
795
796    for ( cx = 0 ; cx < X_SIZE ; cx++ )
797    {
798        for ( cy = 0 ; cy < Y_SIZE ; cy++ )
799        {
800            unsigned int cluster_id = (cx * Y_SIZE) + cy;
801            unsigned int nprocs = cluster[cluster_id].procs;
802
803            for ( lpid = 0 ; lpid < nprocs ; lpid++ )
804            {
805                psched = _schedulers[cx][cy][lpid];
806       
[564]807                _printf("\n[BOOT] interrupt vectors for proc[%d,%d,%d]\n",
[527]808                        cx , cy , lpid );
809
810                for ( slot = 0 ; slot < 32 ; slot++ )
811                {
[564]812                    entry   = psched->hwi_vector[slot];
813                    type    = entry & 0xFFFF;
814                    channel = entry >> 16;
815                    if ( type != ISR_DEFAULT )     
816                    _printf(" - HWI : index = %d / type = %s / channel = %d\n",
817                            slot , _isr_type_str[type] , channel );
[527]818                }
819                for ( slot = 0 ; slot < 32 ; slot++ )
820                {
[564]821                    entry   = psched->wti_vector[slot];
822                    type    = entry & 0xFFFF;
823                    channel = entry >> 16;
824                    if ( type != ISR_DEFAULT )     
825                    _printf(" - WTI : index = %d / type = %s / channel = %d\n",
826                            slot , _isr_type_str[type] , channel );
[527]827                }
828                for ( slot = 0 ; slot < 32 ; slot++ )
829                {
[564]830                    entry   = psched->pti_vector[slot];
831                    type    = entry & 0xFFFF;
832                    channel = entry >> 16;
833                    if ( type != ISR_DEFAULT )     
834                    _printf(" - PTI : index = %d / type = %s / channel = %d\n",
835                            slot , _isr_type_str[type] , channel );
[527]836                }
837            }
838        }
839    } 
840}  // end boot_sched_irq_display()
841#endif
842
843
[258]844////////////////////////////////////////////////////////////////////////////////////
[493]845// This function is executed in parallel by all processors P[x][y][0].
[709]846// P[x][y][0] initialises all schedulers in cluster[x][y]. The MMU must be activated.
[493]847// It is split in two phases separated by a synchronisation barrier.
[709]848// - In Step 1, it initialises the _schedulers[x][y][p] pointers array, the
849//              idle_thread context, the  HWI / PTI / WTI interrupt vectors,
850//              and the XCU HWI / PTI / WTI masks.
851// - In Step 2, it scan all threads in all vspaces to complete the threads contexts,
[493]852//              initialisation as specified in the mapping_info data structure,
853//              and set the CP0_SCHED register.
[258]854////////////////////////////////////////////////////////////////////////////////////
[493]855void boot_scheduler_init( unsigned int x, 
856                          unsigned int y )
[258]857{
[493]858    mapping_header_t*    header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
859    mapping_cluster_t*   cluster = _get_cluster_base(header);
860    mapping_vspace_t*    vspace  = _get_vspace_base(header);
[513]861    mapping_vseg_t*      vseg    = _get_vseg_base(header);
[709]862    mapping_thread_t*    thread  = _get_thread_base(header);
[493]863    mapping_periph_t*    periph  = _get_periph_base(header);
864    mapping_irq_t*       irq     = _get_irq_base(header);
[258]865
[493]866    unsigned int         periph_id; 
867    unsigned int         irq_id;
868    unsigned int         vspace_id;
[513]869    unsigned int         vseg_id;
[709]870    unsigned int         thread_id; 
[258]871
[493]872    unsigned int         sched_vbase;          // schedulers array vbase address
873    unsigned int         sched_length;         // schedulers array length
874    static_scheduler_t*  psched;               // pointer on processor scheduler
[321]875
[527]876    unsigned int cluster_id = (x * Y_SIZE) + y;
877    unsigned int cluster_xy = (x << Y_WIDTH) + y; 
[493]878    unsigned int nprocs = cluster[cluster_id].procs;
879    unsigned int lpid;                       
880   
[527]881    if ( nprocs > 8 )
882    {
883        _printf("\n[BOOT ERROR] cluster[%d,%d] contains more than 8 procs\n", x, y );
884        _exit();
885    }
[258]886
[527]887    ////////////////////////////////////////////////////////////////////////////////
888    // Step 1 : - initialize the schedulers[] array of pointers,
[709]889    //          - initialize the "threads" and "current variables.
890    //          - initialise the idle_thread context.
[527]891    //          - initialize the HWI, PTI and WTI interrupt vectors.
892    //          - initialize the XCU masks for HWI / WTI / PTI interrupts.
893    //
894    // The general policy for interrupts routing is the following:         
895    //          - the local HWI are statically allocatedted to local processors.
896    //          - the nprocs first PTI are allocated for TICK (one per processor).
897    //          - we allocate 4 WTI per processor: the first one is for WAKUP,
898    //            the 3 others WTI are used for external interrupts (from PIC),
899    //            and are dynamically allocated by kernel on demand.
900    ///////////////////////////////////////////////////////////////////////////////
901
[493]902    // get scheduler array virtual base address in cluster[x,y]
903    boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length );
[321]904
[493]905    if ( sched_length < (nprocs<<13) ) // 8 Kbytes per scheduler
906    {
[527]907        _printf("\n[BOOT ERROR] Sched segment too small in cluster[%d,%d]\n",
908                x, y );
[493]909        _exit();
910    }
[321]911
[493]912    // loop on local processors
913    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
[258]914    {
[493]915        // get scheduler pointer and initialise the schedulers pointers array
916        psched = (static_scheduler_t*)(sched_vbase + (lpid<<13));
917        _schedulers[x][y][lpid] = psched;
[258]918
[709]919        // initialise the "threads" and "current" variables default values
920        psched->threads = 0;
921        psched->current = IDLE_THREAD_INDEX;
[258]922
[527]923        // set default values for HWI / PTI / SWI vectors (valid bit = 0)
[493]924        unsigned int slot;
925        for (slot = 0; slot < 32; slot++)
[258]926        {
[493]927            psched->hwi_vector[slot] = 0;
928            psched->pti_vector[slot] = 0;
929            psched->wti_vector[slot] = 0;
[258]930        }
[493]931
[709]932        // initializes the idle_thread context:
933        // - the SR slot is 0xFF03 because this thread run in kernel mode.
[493]934        // - it uses the page table of vspace[0]
[709]935        // - it uses the kernel TTY0 terminal
[493]936        // - slots containing addresses (SP,RA,EPC) are initialised by kernel_init()
[709]937        // - It is always executable (NORUN == 0)
[493]938
[709]939        psched->context[IDLE_THREAD_INDEX].slot[CTX_CR_ID]    = 0;
940        psched->context[IDLE_THREAD_INDEX].slot[CTX_SR_ID]    = 0xFF03;
941        psched->context[IDLE_THREAD_INDEX].slot[CTX_PTPR_ID]  = _ptabs_paddr[0][x][y]>>13;
942        psched->context[IDLE_THREAD_INDEX].slot[CTX_PTAB_ID]  = _ptabs_vaddr[0][x][y];
[757]943        psched->context[IDLE_THREAD_INDEX].slot[CTX_NPT2_ID]  = _ptabs_next_pt2[0][x][y];
[709]944        psched->context[IDLE_THREAD_INDEX].slot[CTX_TTY_ID]   = 0;
945        psched->context[IDLE_THREAD_INDEX].slot[CTX_LTID_ID]  = IDLE_THREAD_INDEX;
946        psched->context[IDLE_THREAD_INDEX].slot[CTX_VSID_ID]  = 0;
947        psched->context[IDLE_THREAD_INDEX].slot[CTX_NORUN_ID] = 0;
948        psched->context[IDLE_THREAD_INDEX].slot[CTX_SIGS_ID]  = 0;
949        psched->context[IDLE_THREAD_INDEX].slot[CTX_LOCKS_ID] = 0;
[493]950    }
951
[527]952    // HWI / PTI / WTI masks (up to 8 local processors)
953    unsigned int hwi_mask[8] = {0,0,0,0,0,0,0,0};
954    unsigned int pti_mask[8] = {0,0,0,0,0,0,0,0};
955    unsigned int wti_mask[8] = {0,0,0,0,0,0,0,0};
956
957    // scan local peripherals to get and check local XCU
[493]958    mapping_periph_t*  xcu = NULL;
[527]959    unsigned int       min = cluster[cluster_id].periph_offset ;
960    unsigned int       max = min + cluster[cluster_id].periphs ;
[493]961
[527]962    for ( periph_id = min ; periph_id < max ; periph_id++ )
[493]963    {
964        if( periph[periph_id].type == PERIPH_TYPE_XCU ) 
[258]965        {
[493]966            xcu = &periph[periph_id];
[258]967
[527]968            // check nb_hwi_in
969            if ( xcu->arg0 < xcu->irqs )
[295]970            {
[538]971                _printf("\n[BOOT ERROR] Not enough HWI inputs for XCU[%d,%d]"
972                        " : nb_hwi = %d / nb_irqs = %d\n",
973                         x , y , xcu->arg0 , xcu->irqs );
[295]974                _exit();
975            }
[527]976            // check nb_pti_in
977            if ( xcu->arg2 < nprocs )
978            {
979                _printf("\n[BOOT ERROR] Not enough PTI inputs for XCU[%d,%d]\n",
980                         x, y );
981                _exit();
982            }
983            // check nb_wti_in
984            if ( xcu->arg1 < (4 * nprocs) )
985            {
986                _printf("\n[BOOT ERROR] Not enough WTI inputs for XCU[%d,%d]\n",
987                        x, y );
988                _exit();
989            }
990            // check nb_irq_out
[538]991            if ( xcu->channels < (nprocs * header->irq_per_proc) )
[527]992            {
993                _printf("\n[BOOT ERROR] Not enough outputs for XCU[%d,%d]\n",
994                        x, y );
995                _exit();
996            }
[493]997        }
998    } 
[263]999
[493]1000    if ( xcu == NULL )
1001    {         
1002        _printf("\n[BOOT ERROR] missing XCU in cluster[%d,%d]\n", x , y );
1003        _exit();
1004    }
[321]1005
[527]1006    // HWI interrupt vector definition
1007    // scan HWI connected to local XCU
[493]1008    // for round-robin allocation to local processors
1009    lpid = 0;
1010    for ( irq_id = xcu->irq_offset ;
1011          irq_id < xcu->irq_offset + xcu->irqs ;
1012          irq_id++ )
1013    {
1014        unsigned int type    = irq[irq_id].srctype;
1015        unsigned int srcid   = irq[irq_id].srcid;
1016        unsigned int isr     = irq[irq_id].isr & 0xFFFF;
1017        unsigned int channel = irq[irq_id].channel << 16;
[321]1018
[493]1019        if ( (type != IRQ_TYPE_HWI) || (srcid > 31) )
1020        {
1021            _printf("\n[BOOT ERROR] Bad IRQ in cluster[%d,%d]\n", x, y );
1022            _exit();
1023        }
[295]1024
[527]1025        // register entry in HWI interrupt vector
1026        _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel;
[295]1027
[527]1028        // update XCU HWI mask for P[x,y,lpid]
1029        hwi_mask[lpid] = hwi_mask[lpid] | (1<<srcid);
1030
[493]1031        lpid = (lpid + 1) % nprocs; 
1032    } // end for irqs
[412]1033
[527]1034    // PTI interrupt vector definition
1035    // one PTI for TICK per processor
1036    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1037    {
1038        // register entry in PTI interrupt vector
1039        _schedulers[x][y][lpid]->pti_vector[lpid] = ISR_TICK;
1040
1041        // update XCU PTI mask for P[x,y,lpid]
1042        pti_mask[lpid] = pti_mask[lpid] | (1<<lpid);
1043    }
1044
1045    // WTI interrupt vector definition
1046    // 4 WTI per processor, first for WAKUP
1047    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1048    {
1049        // register WAKUP ISR in WTI interrupt vector
[552]1050        _schedulers[x][y][lpid]->wti_vector[lpid] = ISR_WAKUP;
[527]1051
1052        // update XCU WTI mask for P[x,y,lpid] (4 entries per proc)
1053        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid                 ));
1054        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + NB_PROCS_MAX  ));
1055        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 2*NB_PROCS_MAX));
1056        wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 3*NB_PROCS_MAX));
1057    }
1058
1059    // set the XCU masks for HWI / WTI / PTI interrupts
1060    for ( lpid = 0 ; lpid < nprocs ; lpid++ )
1061    {
1062        unsigned int channel = lpid * IRQ_PER_PROCESSOR; 
1063
1064        _xcu_set_mask( cluster_xy, channel, hwi_mask[lpid], IRQ_TYPE_HWI ); 
1065        _xcu_set_mask( cluster_xy, channel, wti_mask[lpid], IRQ_TYPE_WTI );
1066        _xcu_set_mask( cluster_xy, channel, pti_mask[lpid], IRQ_TYPE_PTI );
1067    }
1068
[493]1069    //////////////////////////////////////////////
1070    _simple_barrier_wait( &_barrier_all_clusters );
1071    //////////////////////////////////////////////
[412]1072
[527]1073#if BOOT_DEBUG_SCHED
1074if ( cluster_xy == 0 ) boot_sched_irq_display();
1075_simple_barrier_wait( &_barrier_all_clusters );
1076#endif
1077
1078    ///////////////////////////////////////////////////////////////////////////////
[709]1079    // Step 2 : Initialise the threads context. The context of a thread placed
[493]1080    //          on  processor P must be stored in the scheduler of P.
[709]1081    //          For each vspace, this require two nested loops: loop on the threads,
1082    //          and loop on the local processors in cluster[x,y].
1083    //          We complete the scheduler when the required placement matches
1084    //          the local processor.
[527]1085    ///////////////////////////////////////////////////////////////////////////////
[412]1086
[493]1087    for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) 
1088    {
1089        // We must set the PTPR depending on the vspace, because the start_vector
1090        // and the stack address are defined in virtual space.
1091        _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13) );
[258]1092
[709]1093        // loop on the threads in vspace (thread_id is the global index in mapping)
1094        for (thread_id = vspace[vspace_id].thread_offset;
1095             thread_id < (vspace[vspace_id].thread_offset + vspace[vspace_id].threads);
1096             thread_id++) 
[493]1097        {
[709]1098            // get the required thread placement coordinates [x,y,p]
1099            unsigned int req_x      = cluster[thread[thread_id].clusterid].x;
1100            unsigned int req_y      = cluster[thread[thread_id].clusterid].y;
1101            unsigned int req_p      = thread[thread_id].proclocid;                 
[258]1102
[709]1103            // ctx_norun : two conditions to activate a thread
1104            // - The vspace.active flag is set in the mapping
1105            // - The thread.is_main flag is set in the mapping
1106            unsigned int ctx_norun = (unsigned int)(vspace[vspace_id].active == 0) |
1107                                     (unsigned int)(thread[thread_id].is_main == 0);
1108
[493]1109            // ctx_ptpr : page table physical base address (shifted by 13 bit)
1110            unsigned int ctx_ptpr = (_ptabs_paddr[vspace_id][req_x][req_y] >> 13);
[258]1111
[493]1112            // ctx_ptab : page_table virtual base address
1113            unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][req_x][req_y];
[412]1114
[757]1115            // ctx_npt2 : page_table PT2 allocator
1116            unsigned int ctx_npt2 = _ptabs_next_pt2[vspace_id][req_x][req_y];
1117
[646]1118            // ctx_entry : Get the virtual address of the memory location containing
[709]1119            // the thread entry point : the start_vector is stored by GCC in the
1120            // seg_data segment, and we must wait the application.elf loading to get
[527]1121            // the entry point value...
[513]1122            vseg_id = vspace[vspace_id].start_vseg_id;     
[709]1123            unsigned int ctx_entry = vseg[vseg_id].vbase + (thread[thread_id].startid)*4;
[258]1124
[513]1125            // ctx_sp :  Get the vseg containing the stack
[709]1126            // allocate 16 slots (64 bytes) for possible arguments.
1127            vseg_id = thread[thread_id].stack_vseg_id;
1128            unsigned int ctx_sp = vseg[vseg_id].vbase + vseg[vseg_id].length - 64;
[493]1129
1130            // loop on the local processors
1131            for ( lpid = 0 ; lpid < nprocs ; lpid++ )
[258]1132            {
[493]1133                if ( (x == req_x) && (y == req_y) && (req_p == lpid) )   // fit
[295]1134                {
[493]1135                    // pointer on selected scheduler
1136                    psched = _schedulers[x][y][lpid];
[258]1137
[709]1138                    // ltid : compute local thread index in scheduler
1139                    unsigned int ltid = psched->threads;
[258]1140
[709]1141                    // update the threads field in scheduler:
1142                    psched->threads   = ltid + 1;
[258]1143
[726]1144                    // ctx_trdid : compute pthread global identifier
[709]1145                    unsigned int ctx_trdid = x << 24 | y<<16 | lpid<<8 | ltid;
[321]1146
[709]1147                    // initializes the thread context
1148                    psched->context[ltid].slot[CTX_CR_ID]     = 0;
1149                    psched->context[ltid].slot[CTX_SR_ID]     = GIET_SR_INIT_VALUE;
1150                    psched->context[ltid].slot[CTX_SP_ID]     = ctx_sp;
1151                    psched->context[ltid].slot[CTX_EPC_ID]    = ctx_entry;
1152                    psched->context[ltid].slot[CTX_ENTRY_ID]  = ctx_entry;
1153                    psched->context[ltid].slot[CTX_PTPR_ID]   = ctx_ptpr;
1154                    psched->context[ltid].slot[CTX_PTAB_ID]   = ctx_ptab;
[757]1155                    psched->context[ltid].slot[CTX_NPT2_ID]   = ctx_npt2;
[709]1156                    psched->context[ltid].slot[CTX_LTID_ID]   = ltid;
1157                    psched->context[ltid].slot[CTX_TRDID_ID]  = ctx_trdid;
1158                    psched->context[ltid].slot[CTX_VSID_ID]   = vspace_id;
1159                    psched->context[ltid].slot[CTX_NORUN_ID]  = ctx_norun;
1160                    psched->context[ltid].slot[CTX_SIGS_ID]   = 0;
1161                    psched->context[ltid].slot[CTX_LOCKS_ID]  = 0;
[493]1162
[709]1163                    psched->context[ltid].slot[CTX_TTY_ID]    = 0xFFFFFFFF;
1164                    psched->context[ltid].slot[CTX_CMA_FB_ID] = 0xFFFFFFFF;
1165                    psched->context[ltid].slot[CTX_CMA_RX_ID] = 0xFFFFFFFF;
1166                    psched->context[ltid].slot[CTX_CMA_TX_ID] = 0xFFFFFFFF;
1167                    psched->context[ltid].slot[CTX_NIC_RX_ID] = 0xFFFFFFFF;
1168                    psched->context[ltid].slot[CTX_NIC_TX_ID] = 0xFFFFFFFF;
1169                    psched->context[ltid].slot[CTX_TIM_ID]    = 0xFFFFFFFF;
1170                    psched->context[ltid].slot[CTX_HBA_ID]    = 0xFFFFFFFF;
[631]1171
[709]1172                    // update thread ltid field in the mapping
1173                    thread[thread_id].ltid = ltid;
1174
[493]1175#if BOOT_DEBUG_SCHED
[709]1176_printf("\nThread %s in vspace %s allocated to P[%d,%d,%d]\n"
[493]1177        " - ctx[LTID]  = %d\n"
[709]1178        " - ctx[TRDID] = %d\n"
[493]1179        " - ctx[SR]    = %x\n"
1180        " - ctx[SP]    = %x\n"
[646]1181        " - ctx[ENTRY] = %x\n"
[493]1182        " - ctx[PTPR]  = %x\n"
1183        " - ctx[PTAB]  = %x\n"
[757]1184        " - ctx[NPT2]  = %x\n"
[493]1185        " - ctx[VSID]  = %d\n"
[695]1186        " - ctx[NORUN] = %x\n"
1187        " - ctx[SIG]   = %x\n",
[709]1188        thread[thread_id].name,
[493]1189        vspace[vspace_id].name,
1190        x, y, lpid,
[709]1191        psched->context[ltid].slot[CTX_LTID_ID],
1192        psched->context[ltid].slot[CTX_TRDID_ID],
1193        psched->context[ltid].slot[CTX_SR_ID],
1194        psched->context[ltid].slot[CTX_SP_ID],
1195        psched->context[ltid].slot[CTX_ENTRY_ID],
1196        psched->context[ltid].slot[CTX_PTPR_ID],
1197        psched->context[ltid].slot[CTX_PTAB_ID],
[757]1198        psched->context[ltid].slot[CTX_NPT2_ID],
[709]1199        psched->context[ltid].slot[CTX_VSID_ID],
1200        psched->context[ltid].slot[CTX_NORUN_ID],
[732]1201        psched->context[ltid].slot[CTX_SIGS_ID] );
[493]1202#endif
1203                } // end if FIT
1204            } // end for loop on local procs
[709]1205        } // end loop on threads
[493]1206    } // end loop on vspaces
1207} // end boot_scheduler_init()
1208
1209
1210
[258]1211//////////////////////////////////////////////////////////////////////////////////
1212// This function loads the map.bin file from block device.
1213//////////////////////////////////////////////////////////////////////////////////
1214void boot_mapping_init()
1215{
[726]1216
1217#if BOOT_DEBUG_MAPPING
[791]1218_printf("\n[BOOT DEBUG] boot_mapping_init() : enter\n");
[726]1219#endif
1220
[590]1221    // load map.bin file into buffer
1222    if ( _fat_load_no_cache( "map.bin",
1223                             SEG_BOOT_MAPPING_BASE,
1224                             SEG_BOOT_MAPPING_SIZE ) )
[258]1225    {
[493]1226        _printf("\n[BOOT ERROR] : map.bin file not found \n");
[258]1227        _exit();
1228    }
1229
[477]1230    // check mapping signature, number of clusters, number of vspaces 
1231    mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1232    if ( (header->signature != IN_MAPPING_SIGNATURE) ||
1233         (header->x_size    != X_SIZE)               || 
1234         (header->y_size    != Y_SIZE)               ||
1235         (header->vspaces   > GIET_NB_VSPACE_MAX)    )
1236    {
[590]1237        _printf("\n[BOOT ERROR] Illegal mapping : signature = %x\n", header->signature );
[524]1238        _exit();
1239    }
[477]1240
1241#if BOOT_DEBUG_MAPPING
1242unsigned int  line;
1243unsigned int* pointer = (unsigned int*)SEG_BOOT_MAPPING_BASE;
[493]1244_printf("\n[BOOT] First block of mapping\n");
[477]1245for ( line = 0 ; line < 8 ; line++ )
1246{
[590]1247    _printf(" | %X | %X | %X | %X | %X | %X | %X | %X |\n",
[493]1248            *(pointer + 0),
1249            *(pointer + 1),
1250            *(pointer + 2),
1251            *(pointer + 3),
1252            *(pointer + 4),
1253            *(pointer + 5),
1254            *(pointer + 6),
1255            *(pointer + 7) );
1256
[477]1257    pointer = pointer + 8;
1258}
1259#endif
1260
[258]1261} // end boot_mapping_init()
1262
1263
[557]1264///////////////////////////////////////////////////
1265void boot_dma_copy( unsigned int        cluster_xy,     
1266                    unsigned long long  dst_paddr,
1267                    unsigned long long  src_paddr, 
1268                    unsigned int        size )   
1269{
1270    // size must be multiple of 64 bytes
1271    if ( size & 0x3F ) size = (size & (~0x3F)) + 0x40;
1272
1273    unsigned int mode = MODE_DMA_NO_IRQ;
1274
1275    unsigned int src     = 0;
1276    unsigned int src_lsb = (unsigned int)src_paddr;
1277    unsigned int src_msb = (unsigned int)(src_paddr>>32);
1278   
1279    unsigned int dst     = 1;
1280    unsigned int dst_lsb = (unsigned int)dst_paddr;
1281    unsigned int dst_msb = (unsigned int)(dst_paddr>>32);
1282
1283    // initializes src channel
1284    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_MODE       , mode );
1285    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_SIZE       , size );
1286    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_LSB , src_lsb );
1287    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_MSB , src_msb );
1288    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING    , 1 );
1289
1290    // initializes dst channel
1291    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_MODE       , mode );
1292    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_SIZE       , size );
1293    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_LSB , dst_lsb );
1294    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_MSB , dst_msb );
1295    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING    , 1 );
1296
1297    // start CPY coprocessor (write non-zero value into config register)
1298    _mwr_set_coproc_register( cluster_xy, 0 , 1 );
1299
1300    // poll dst channel status register to detect completion
1301    unsigned int status;
1302    do
1303    {
1304        status = _mwr_get_channel_register( cluster_xy , dst , MWR_CHANNEL_STATUS );
1305    } while ( status == MWR_CHANNEL_BUSY );
1306
1307    if ( status )
1308    {
1309        _printf("\n[BOOT ERROR] in boot_dma_copy()\n");
1310        _exit();
1311    } 
1312 
1313    // stop CPY coprocessor and DMA channels
1314    _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING    , 0 );
1315    _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING    , 0 );
1316    _mwr_set_coproc_register ( cluster_xy , 0 , 0 );
1317
1318}  // end boot_dma_copy()
1319
[527]1320//////////////////////////////////////////////////////////////////////////////////
1321// This function load all loadable segments contained in the .elf file identified
[347]1322// by the "pathname" argument. Some loadable segments can be copied in several
1323// clusters: same virtual address but different physical addresses. 
1324// - It open the file.
[527]1325// - It loads the complete file in the dedicated _boot_elf_buffer.
[359]1326// - It copies each loadable segments  at the virtual address defined in
1327//   the .elf file, making several copies if the target vseg is not local.
[347]1328// - It closes the file.
[527]1329// This function is supposed to be executed by all processors[x,y,0].
1330//
1331// Note: We must use physical addresses to reach the destination buffers that
1332// can be located in remote clusters. We use either a _physical_memcpy(),
1333// or a _dma_physical_copy() if DMA is available.
1334//////////////////////////////////////////////////////////////////////////////////
[347]1335void load_one_elf_file( unsigned int is_kernel,     // kernel file if non zero
[258]1336                        char*        pathname,
[347]1337                        unsigned int vspace_id )    // to scan the proper vspace
[258]1338{
[347]1339    mapping_header_t  * header  = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1340    mapping_vspace_t  * vspace  = _get_vspace_base(header);
1341    mapping_vseg_t    * vseg    = _get_vseg_base(header);
1342
[527]1343    unsigned int procid = _get_procid();
1344    unsigned int cxy    = procid >> P_WIDTH;
1345    unsigned int x      = cxy >> Y_WIDTH;
1346    unsigned int y      = cxy & ((1<<Y_WIDTH)-1);
1347    unsigned int p      = procid & ((1<<P_WIDTH)-1);
[258]1348
1349#if BOOT_DEBUG_ELF
[557]1350_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] enters for %s\n",
[527]1351        x , y , p , pathname );
[258]1352#endif
1353
[527]1354    Elf32_Ehdr* elf_header_ptr = NULL;  //  avoid a warning
[258]1355
[590]1356    // only P[0,0,0] load file
[527]1357    if ( (cxy == 0) && (p == 0) )
[258]1358    {
[590]1359        if ( _fat_load_no_cache( pathname,
1360                                 (unsigned int)_boot_elf_buffer,
1361                                 GIET_ELF_BUFFER_SIZE ) )
[527]1362        {
[590]1363            _printf("\n[BOOT ERROR] in load_one_elf_file() : %s\n", pathname );
[527]1364            _exit();
1365        }
[258]1366
[527]1367        // Check ELF Magic Number in ELF header
1368        Elf32_Ehdr* ptr = (Elf32_Ehdr*)_boot_elf_buffer;
1369
1370        if ( (ptr->e_ident[EI_MAG0] != ELFMAG0) ||
1371             (ptr->e_ident[EI_MAG1] != ELFMAG1) ||
1372             (ptr->e_ident[EI_MAG2] != ELFMAG2) ||
1373             (ptr->e_ident[EI_MAG3] != ELFMAG3) )
1374        {
[557]1375            _printf("\n[BOOT ERROR] load_one_elf_file() : %s not ELF format\n",
[527]1376                    pathname );
1377            _exit();
1378        }
1379
1380#if BOOT_DEBUG_ELF
[557]1381_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] load %s at cycle %d\n", 
1382        x , y , p , pathname , _get_proctime() );
[527]1383#endif
1384
1385    } // end if P[0,0,0]
1386
1387    //////////////////////////////////////////////
1388    _simple_barrier_wait( &_barrier_all_clusters );
1389    //////////////////////////////////////////////
1390
1391    // Each processor P[x,y,0] copy replicated segments in cluster[x,y]
1392    elf_header_ptr = (Elf32_Ehdr*)_boot_elf_buffer;
1393
[258]1394    // get program header table pointer
[527]1395    unsigned int offset = elf_header_ptr->e_phoff;
1396    if( offset == 0 )
[258]1397    {
[493]1398        _printf("\n[BOOT ERROR] load_one_elf_file() : file %s "
1399                "does not contain loadable segment\n", pathname );
[258]1400        _exit();
1401    }
1402
[527]1403    Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(_boot_elf_buffer + offset);
1404
[258]1405    // get number of segments
1406    unsigned int nsegments   = elf_header_ptr->e_phnum;
1407
[527]1408    // First loop on loadable segments in the .elf file
1409    unsigned int seg_id;
[258]1410    for (seg_id = 0 ; seg_id < nsegments ; seg_id++)
1411    {
1412        if(elf_pht_ptr[seg_id].p_type == PT_LOAD)
1413        {
1414            // Get segment attributes
1415            unsigned int seg_vaddr  = elf_pht_ptr[seg_id].p_vaddr;
1416            unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset;
1417            unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz;
1418            unsigned int seg_memsz  = elf_pht_ptr[seg_id].p_memsz;
1419
[527]1420            if( seg_memsz != seg_filesz )
[258]1421            {
[527]1422                _printf("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = %x\n"
1423                        " in file %s has memsize = %x / filesize = %x \n"
1424                        " check that all global variables are in data segment\n", 
1425                        seg_vaddr, pathname , seg_memsz , seg_filesz );
[709]1426                 _exit();
[258]1427            }
1428
[527]1429            unsigned int src_vaddr = (unsigned int)_boot_elf_buffer + seg_offset;
[258]1430
[347]1431            // search all vsegs matching the virtual address
1432            unsigned int vseg_first;
1433            unsigned int vseg_last;
1434            unsigned int vseg_id;
1435            unsigned int found = 0;
1436            if ( is_kernel )
1437            {
1438                vseg_first = 0;
1439                vseg_last  = header->globals;
1440            }
1441            else
1442            {
1443                vseg_first = vspace[vspace_id].vseg_offset;
1444                vseg_last  = vseg_first + vspace[vspace_id].vsegs;
1445            }
1446
[527]1447            // Second loop on vsegs in the mapping
[347]1448            for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ )
1449            {
1450                if ( seg_vaddr == vseg[vseg_id].vbase )  // matching
1451                {
1452                    found = 1;
1453
[527]1454                    // get destination buffer physical address, size, coordinates
[347]1455                    paddr_t      seg_paddr  = vseg[vseg_id].pbase;
[513]1456                    unsigned int seg_size   = vseg[vseg_id].length;
[557]1457                    unsigned int cluster_xy = (unsigned int)(seg_paddr>>32);
1458                    unsigned int cx         = cluster_xy >> Y_WIDTH;
1459                    unsigned int cy         = cluster_xy & ((1<<Y_WIDTH)-1);
[527]1460
[347]1461                    // check vseg size
1462                    if ( seg_size < seg_filesz )
1463                    {
[493]1464                        _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg %s "
[590]1465                                "is too small for segment %x\n"
1466                                "  file = %s / vseg_size = %x / seg_file_size = %x\n",
1467                                vseg[vseg_id].name , seg_vaddr , pathname,
1468                                seg_size , seg_filesz );
[347]1469                        _exit();
1470                    }
[258]1471
[527]1472                    // P[x,y,0] copy the segment from boot buffer in cluster[0,0]
[557]1473                    // to destination buffer in cluster[x,y], using DMA if available
[527]1474                    if ( (cx == x) && (cy == y) )
[347]1475                    {
[557]1476                        if( USE_MWR_CPY )
[527]1477                        {
[557]1478                            boot_dma_copy( cluster_xy,  // DMA in cluster[x,y]       
1479                                           seg_paddr,
1480                                           (paddr_t)src_vaddr, 
1481                                           seg_filesz );   
1482#if BOOT_DEBUG_ELF
1483_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : DMA[%d,%d] copy segment %d :\n"
1484        "  vaddr = %x / size = %x / paddr = %l\n",
1485        x , y , seg_id , seg_vaddr , seg_memsz , seg_paddr );
1486#endif
[527]1487                        }
1488                        else
1489                        {
1490                            _physical_memcpy( seg_paddr,            // dest paddr
1491                                              (paddr_t)src_vaddr,   // source paddr
1492                                              seg_filesz );         // size
1493#if BOOT_DEBUG_ELF
[557]1494_printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] copy segment %d :\n"
[527]1495        "  vaddr = %x / size = %x / paddr = %l\n",
1496        x , y , p , seg_id , seg_vaddr , seg_memsz , seg_paddr );
1497#endif
[557]1498                        }
[347]1499                    }
1500                }
[527]1501            }  // end for vsegs
[347]1502
1503            // check at least one matching vseg
1504            if ( found == 0 )
[258]1505            {
[493]1506                _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg for loadable "
1507                        "segment %x in file %s not found "
1508                        "check consistency between the .py and .ld files\n",
1509                        seg_vaddr, pathname );
[347]1510                _exit();
[258]1511            }
1512        }
[347]1513    }  // end for loadable segments
[258]1514
[527]1515    //////////////////////////////////////////////
1516    _simple_barrier_wait( &_barrier_all_clusters );
1517    //////////////////////////////////////////////
[258]1518
[590]1519    // only P[0,0,0] signals completion
[527]1520    if ( (cxy == 0) && (p == 0) )
1521    {
1522        _printf("\n[BOOT] File %s loaded at cycle %d\n", 
1523                pathname , _get_proctime() );
1524    }
1525
[258]1526} // end load_one_elf_file()
1527
1528
[347]1529/////i////////////////////////////////////////////////////////////////////////////////
[258]1530// This function uses the map.bin data structure to load the "kernel.elf" file
[347]1531// as well as the various "application.elf" files into memory.
1532// - The "preloader.elf" file is not loaded, because it has been burned in the ROM.
1533// - The "boot.elf" file is not loaded, because it has been loaded by the preloader.
[513]1534// This function scans all vsegs defined in the map.bin data structure to collect
[347]1535// all .elf files pathnames, and calls the load_one_elf_file() for each .elf file.
1536// As the code can be replicated in several vsegs, the same code can be copied
1537// in one or several clusters by the load_one_elf_file() function.
1538//////////////////////////////////////////////////////////////////////////////////////
[258]1539void boot_elf_load()
1540{
[321]1541    mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
[258]1542    mapping_vspace_t* vspace = _get_vspace_base( header );
[513]1543    mapping_vseg_t*   vseg   = _get_vseg_base( header );
1544
[258]1545    unsigned int      vspace_id;
[513]1546    unsigned int      vseg_id;
[258]1547    unsigned int      found;
1548
[513]1549    // Scan all global vsegs to find the pathname to the kernel.elf file
[258]1550    found = 0;
[513]1551    for( vseg_id = 0 ; vseg_id < header->globals ; vseg_id++ )
[258]1552    {
[513]1553        if(vseg[vseg_id].type == VSEG_TYPE_ELF) 
[258]1554        {   
1555            found = 1;
1556            break;
1557        }
1558    }
1559
1560    // We need one kernel.elf file
1561    if (found == 0)
1562    {
[493]1563        _printf("\n[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n");
[258]1564        _exit();
1565    }
1566
[347]1567    // Load the kernel
1568    load_one_elf_file( 1,                           // kernel file
[513]1569                       vseg[vseg_id].binpath,       // file pathname
[258]1570                       0 );                         // vspace 0
1571
[513]1572    // loop on the vspaces, scanning all vsegs in the vspace,
[258]1573    // to find the pathname of the .elf file associated to the vspace.
1574    for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ )
1575    {
[513]1576        // loop on the private vsegs
[258]1577        unsigned int found = 0;
[513]1578        for (vseg_id = vspace[vspace_id].vseg_offset;
1579             vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs);
1580             vseg_id++) 
[258]1581        {
[513]1582            if(vseg[vseg_id].type == VSEG_TYPE_ELF) 
[258]1583            {   
1584                found = 1;
1585                break;
1586            }
1587        }
1588
1589        // We want one .elf file per vspace
1590        if (found == 0)
1591        {
[493]1592            _printf("\n[BOOT ERROR] boot_elf_load() : "
1593                    ".elf file not found for vspace %s\n", vspace[vspace_id].name );
[258]1594            _exit();
1595        }
1596
[347]1597        load_one_elf_file( 0,                          // not a kernel file
[513]1598                           vseg[vseg_id].binpath,      // file pathname
[347]1599                           vspace_id );                // vspace index
[258]1600
1601    }  // end for vspaces
1602
1603} // end boot_elf_load()
1604
1605
[527]1606/////////////////////////////////////////////////////////////////////////////////
[493]1607// This function is executed in parallel by all processors[x][y][0].
[527]1608// It initialises the physical memory allocator in each cluster containing
1609// a RAM pseg.
1610/////////////////////////////////////////////////////////////////////////////////
[493]1611void boot_pmem_init( unsigned int cx,
1612                     unsigned int cy ) 
[412]1613{
1614    mapping_header_t*  header     = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1615    mapping_cluster_t* cluster    = _get_cluster_base(header);
1616    mapping_pseg_t*    pseg       = _get_pseg_base(header);
1617
1618    unsigned int pseg_id;
[490]1619    unsigned int procid     = _get_procid();
1620    unsigned int lpid       = procid & ((1<<P_WIDTH)-1);
[493]1621
1622    if( lpid )
[490]1623    {
[493]1624        _printf("\n[BOOT ERROR] boot_pmem_init() : "
1625        "P[%d][%d][%d] should not execute it\n", cx, cy, lpid );
[490]1626        _exit();
[493]1627    }   
[412]1628
[493]1629    // scan the psegs in local cluster to find  pseg of type RAM
1630    unsigned int found      = 0;
1631    unsigned int cluster_id = cx * Y_SIZE + cy;
1632    unsigned int pseg_min   = cluster[cluster_id].pseg_offset;
1633    unsigned int pseg_max   = pseg_min + cluster[cluster_id].psegs;
[757]1634
[490]1635    for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ )
[412]1636    {
[490]1637        if ( pseg[pseg_id].type == PSEG_TYPE_RAM )
[412]1638        {
[490]1639            unsigned int base = (unsigned int)pseg[pseg_id].base;
1640            unsigned int size = (unsigned int)pseg[pseg_id].length;
[493]1641            _pmem_alloc_init( cx, cy, base, size );
1642            found = 1;
[412]1643
1644#if BOOT_DEBUG_PT
[493]1645_printf("\n[BOOT] pmem allocator initialised in cluster[%d][%d]"
1646        " : base = %x / size = %x\n", cx , cy , base , size );
[412]1647#endif
[490]1648            break;
[412]1649        }
1650    }
[493]1651
1652    if ( found == 0 )
1653    {
1654        _printf("\n[BOOT ERROR] boot_pmem_init() : no RAM in cluster[%d][%d]\n",
[527]1655                cx , cy );
[493]1656        _exit();
1657    }   
[412]1658} // end boot_pmem_init()
1659 
1660/////////////////////////////////////////////////////////////////////////
[258]1661// This function is the entry point of the boot code for all processors.
1662/////////////////////////////////////////////////////////////////////////
[347]1663void boot_init() 
[258]1664{
[493]1665
[295]1666    unsigned int       gpid       = _get_procid();
[493]1667    unsigned int       cx         = gpid >> (Y_WIDTH + P_WIDTH);
1668    unsigned int       cy         = (gpid >> P_WIDTH) & ((1<<Y_WIDTH)-1);
1669    unsigned int       lpid       = gpid & ((1 << P_WIDTH) -1);
[490]1670
[527]1671    //////////////////////////////////////////////////////////
[493]1672    // Phase ONE : only P[0][0][0] execute it
[527]1673    //////////////////////////////////////////////////////////
[493]1674    if ( gpid == 0 )   
[258]1675    {
[552]1676        unsigned int cid;  // index for loop on clusters
[258]1677
[493]1678        // initialises the TTY0 spin lock
1679        _spin_lock_init( &_tty0_spin_lock );
1680
1681        _printf("\n[BOOT] P[0,0,0] starts at cycle %d\n", _get_proctime() );
1682
[631]1683        // initialise the MMC locks array
1684        _mmc_boot_mode = 1;
1685        _mmc_init_locks();
1686
[552]1687        // initialises the IOC peripheral
1688        if      ( USE_IOC_BDV != 0 ) _bdv_init();
1689        else if ( USE_IOC_HBA != 0 ) _hba_init();
1690        else if ( USE_IOC_SDC != 0 ) _sdc_init();
1691        else if ( USE_IOC_RDK == 0 )
1692        {
1693            _printf("\n[BOOT ERROR] boot_init() : no IOC peripheral\n");
1694            _exit();
1695        }
1696
[460]1697        // initialises the FAT
[590]1698        _fat_init( 0 );          // don't use Inode-Tree, Fat-Cache, etc.
[460]1699
[493]1700        _printf("\n[BOOT] FAT initialised at cycle %d\n", _get_proctime() );
1701
1702        // Load the map.bin file into memory
[258]1703        boot_mapping_init();
1704
[524]1705        mapping_header_t*  header     = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1706        mapping_cluster_t* cluster    = _get_cluster_base(header);
1707
[757]1708        _printf("\n[BOOT] Mapping %s at cycle %d\n",
[493]1709                header->name , _get_proctime() );
[258]1710
[493]1711        // initialises the barrier for all clusters containing processors
1712        unsigned int nclusters = 0;
1713        for ( cid = 0 ; cid < X_SIZE*Y_SIZE ; cid++ )
1714        {
1715            if ( cluster[cid].procs ) nclusters++ ;
1716        } 
[490]1717
[493]1718        _simple_barrier_init( &_barrier_all_clusters , nclusters );
1719
1720        // wake up all processors P[x][y][0]
1721        for ( cid = 1 ; cid < X_SIZE*Y_SIZE ; cid++ ) 
[490]1722        {
[493]1723            unsigned int x          = cluster[cid].x;
1724            unsigned int y          = cluster[cid].y;
1725            unsigned int cluster_xy = (x << Y_WIDTH) + y;
[490]1726
[493]1727            if ( cluster[cid].procs ) 
1728            {
1729                unsigned long long paddr = (((unsigned long long)cluster_xy)<<32) +
[527]1730                                           SEG_XCU_BASE+XCU_REG( XCU_WTI_REG , 0 );
[493]1731
1732                _physical_write( paddr , (unsigned int)boot_entry );
1733            }
[490]1734        }
[412]1735
[527]1736        _printf("\n[BOOT] Processors P[x,y,0] start at cycle %d\n",
1737                _get_proctime() );
[490]1738    }
[412]1739
[527]1740    /////////////////////////////////////////////////////////////////
[493]1741    // Phase TWO : All processors P[x][y][0] execute it in parallel
[527]1742    /////////////////////////////////////////////////////////////////
[493]1743    if( lpid == 0 )
[490]1744    {
[493]1745        // Initializes physical memory allocator in cluster[cx][cy]
1746        boot_pmem_init( cx , cy );
[412]1747
[493]1748        // Build page table in cluster[cx][cy]
1749        boot_ptab_init( cx , cy );
[258]1750
[493]1751        //////////////////////////////////////////////
1752        _simple_barrier_wait( &_barrier_all_clusters );
1753        //////////////////////////////////////////////
[258]1754
[493]1755        // P[0][0][0] complete page tables with vsegs
1756        // mapped in clusters without processors
1757        if ( gpid == 0 )   
1758        {
1759            // complete page tables initialisation
1760            boot_ptab_extend();
[258]1761
[732]1762            _printf("\n[BOOT] Page tables"
[493]1763                    " initialized at cycle %d\n", _get_proctime() );
1764        }
[258]1765
[493]1766        //////////////////////////////////////////////
1767        _simple_barrier_wait( &_barrier_all_clusters );
1768        //////////////////////////////////////////////
1769
1770        // All processors P[x,y,0] activate MMU (using local PTAB)
1771        _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) );
1772        _set_mmu_mode( 0xF );
[258]1773       
[493]1774        // Each processor P[x,y,0] initialises all schedulers in cluster[x,y]
1775        boot_scheduler_init( cx , cy );
[258]1776
[493]1777        // Each processor P[x][y][0] initialises its CP0_SCHED register
1778        _set_sched( (unsigned int)_schedulers[cx][cy][0] );
[258]1779
[493]1780        //////////////////////////////////////////////
1781        _simple_barrier_wait( &_barrier_all_clusters );
1782        //////////////////////////////////////////////
[527]1783
[493]1784        if ( gpid == 0 ) 
1785        {
[527]1786            _printf("\n[BOOT] Schedulers initialised at cycle %d\n", 
1787                    _get_proctime() );
1788        }
[258]1789
[552]1790        // All processor P[x,y,0] contributes to load .elf files into clusters.
[527]1791        boot_elf_load();
[258]1792
[527]1793        //////////////////////////////////////////////
1794        _simple_barrier_wait( &_barrier_all_clusters );
1795        //////////////////////////////////////////////
1796       
[552]1797        // Each processor P[x][y][0] wake up other processors in same cluster
[524]1798        mapping_header_t*  header     = (mapping_header_t *)SEG_BOOT_MAPPING_BASE;
1799        mapping_cluster_t* cluster    = _get_cluster_base(header);
1800        unsigned int       cluster_xy = (cx << Y_WIDTH) + cy;
1801        unsigned int       cluster_id = (cx * Y_SIZE) + cy;
[493]1802        unsigned int p;
1803        for ( p = 1 ; p < cluster[cluster_id].procs ; p++ )
1804        {
1805            _xcu_send_wti( cluster_xy , p , (unsigned int)boot_entry );
1806        }
[258]1807
[527]1808        // only P[0][0][0] makes display
1809        if ( gpid == 0 )
1810        {   
1811            _printf("\n[BOOT] All processors start at cycle %d\n",
1812                    _get_proctime() );
1813        }
[493]1814    }
[552]1815    // All other processors activate MMU (using local PTAB)
[493]1816    if ( lpid != 0 )
[258]1817    {
[493]1818        _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) );
[258]1819        _set_mmu_mode( 0xF );
1820    }
1821
[493]1822    // All processors set CP0_SCHED register
1823    _set_sched( (unsigned int)_schedulers[cx][cy][lpid] );
1824
1825    // All processors reset BEV bit in SR to use GIET_VM exception handler
[427]1826    _set_sr( 0 );
1827
[646]1828    // Each processor get kernel entry virtual address
[742]1829    unsigned int kernel_entry = 0x80000000;
[527]1830
1831#if BOOT_DEBUG_ELF
[552]1832_printf("\n[DEBUG BOOT_ELF] P[%d,%d,%d] exit boot & jump to %x at cycle %d\n",
[527]1833        cx, cy, lpid, kernel_entry , _get_proctime() );
1834#endif
1835
[493]1836    // All processors jump to kernel_init
[258]1837    asm volatile( "jr   %0" ::"r"(kernel_entry) );
1838
1839} // end boot_init()
1840
1841
1842// Local Variables:
1843// tab-width: 4
1844// c-basic-offset: 4
1845// c-file-offsets:((innamespace . 0)(inline-open . 0))
1846// indent-tabs-mode: nil
1847// End:
1848// vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4
1849
Note: See TracBrowser for help on using the repository browser.