[527] | 1 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 2 | // File : boot.c |
---|
| 3 | // Date : 01/11/2013 |
---|
| 4 | // Author : alain greiner |
---|
| 5 | // Copyright (c) UPMC-LIP6 |
---|
[527] | 6 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 7 | // The boot.c file contains the bootloader for the GIET-VM static OS. |
---|
[258] | 8 | // |
---|
[493] | 9 | // This code has been written for the MIPS32 processor. |
---|
[359] | 10 | // The virtual adresses are on 32 bits and use the (unsigned int) type. The |
---|
[527] | 11 | // physicals addresses can have up to 40 bits, and use type (unsigned long long). |
---|
[412] | 12 | // It natively supports clusterised shared memory multi-processors architectures, |
---|
[493] | 13 | // where each processor is identified by a composite index [x,y,p], |
---|
[258] | 14 | // and where there is one physical memory bank per cluster. |
---|
| 15 | // |
---|
[493] | 16 | // The boot.elf file is stored on disk and is loaded into memory by proc[0,0,0], |
---|
| 17 | // executing the generic preloader (stored in ROM). The boot-loader code itself |
---|
| 18 | // is executed in parallel by all proc[x,y,0], and performs the following tasks: |
---|
| 19 | // - load into memory various binary files, from a FAT32 file system. |
---|
| 20 | // - build the various page tables (one page table per vspace). |
---|
| 21 | // - initialize the shedulers (one scheduler per processor). |
---|
[258] | 22 | // |
---|
| 23 | // 1) The binary files to be loaded are: |
---|
[631] | 24 | // - the "map.bin" file contains the hardware architecture description, |
---|
| 25 | // the set of user applications that will be mapped on the architecture, |
---|
[709] | 26 | // and the mapping directives. The mapping includes the placement of threads |
---|
[631] | 27 | // on processors, and the placement of virtual segments on the physical |
---|
[709] | 28 | // segments. It is stored in the the seg_boot_mapping segment |
---|
[321] | 29 | // (at address SEG_BOOT_MAPPING_BASE defined in hard_config.h file). |
---|
[493] | 30 | // - the "kernel.elf" file contains the kernel binary code and data. |
---|
[258] | 31 | // - the various "application.elf" files. |
---|
| 32 | // |
---|
[732] | 33 | // 2) The GIET-VM uses the paged virtual memory to provide two services: |
---|
[258] | 34 | // - classical memory protection, when several independant applications compiled |
---|
| 35 | // in different virtual spaces are executing on the same hardware platform. |
---|
[412] | 36 | // - data placement in NUMA architectures, to control the placement |
---|
| 37 | // of the software objects (vsegs) on the physical memory banks (psegs). |
---|
[527] | 38 | // The max number of vspaces (GIET_NB_VSPACE_MAX) is a configuration parameter. |
---|
[709] | 39 | // The page tables are statically build in the boot phase, and they do not |
---|
| 40 | // change during execution. |
---|
| 41 | // For each application, the page tables are replicated in all clusters. |
---|
[412] | 42 | // The GIET_VM uses both small pages (4 Kbytes), and big pages (2 Mbytes). |
---|
[527] | 43 | // Each page table (one page table per virtual space) is monolithic, and |
---|
| 44 | // contains one PT1 (8 Kbytes) and a variable number of PT2s (4 Kbytes each). |
---|
[631] | 45 | // For each vspace, the max number of PT2s is defined by the size of the PTAB |
---|
| 46 | // vseg in the mapping. |
---|
[527] | 47 | // The PT1 is indexed by the ix1 field (11 bits) of the VPN. An entry is 32 bits. |
---|
| 48 | // A PT2 is indexed the ix2 field (9 bits) of the VPN. An entry is 64 bits. |
---|
[412] | 49 | // The first word contains the flags, the second word contains the PPN. |
---|
[631] | 50 | // |
---|
| 51 | // 3) The Giet-VM implement one private scheduler per processor. |
---|
[709] | 52 | // For each application, the threads are statically allocated to processors |
---|
| 53 | // and there is no thread migration during execution. |
---|
| 54 | // Each sheduler occupies 8K bytes, and contains up to 14 thread contexts |
---|
| 55 | // The thread context [13] is reserved for the "idle" thread that does nothing, |
---|
| 56 | // and is launched by the scheduler when there is no other runable thread. |
---|
[527] | 57 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[263] | 58 | // Implementation Notes: |
---|
| 59 | // |
---|
[527] | 60 | // 1) The cluster_id variable is a linear index in the mapping_info array. |
---|
[493] | 61 | // The cluster_xy variable is the tological index = x << Y_WIDTH + y |
---|
[412] | 62 | // |
---|
[493] | 63 | // 2) We set the _tty0_boot_mode variable to force the _printf() function to use |
---|
| 64 | // the tty0_spin_lock for exclusive access to TTY0. |
---|
[527] | 65 | /////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 66 | |
---|
[263] | 67 | #include <giet_config.h> |
---|
[464] | 68 | #include <hard_config.h> |
---|
[436] | 69 | #include <mapping_info.h> |
---|
[464] | 70 | #include <kernel_malloc.h> |
---|
[258] | 71 | #include <memspace.h> |
---|
| 72 | #include <tty_driver.h> |
---|
| 73 | #include <xcu_driver.h> |
---|
[347] | 74 | #include <bdv_driver.h> |
---|
[460] | 75 | #include <hba_driver.h> |
---|
[527] | 76 | #include <sdc_driver.h> |
---|
[258] | 77 | #include <cma_driver.h> |
---|
| 78 | #include <nic_driver.h> |
---|
[299] | 79 | #include <iob_driver.h> |
---|
[295] | 80 | #include <pic_driver.h> |
---|
[258] | 81 | #include <mwr_driver.h> |
---|
[527] | 82 | #include <dma_driver.h> |
---|
[631] | 83 | #include <mmc_driver.h> |
---|
[258] | 84 | #include <ctx_handler.h> |
---|
| 85 | #include <irq_handler.h> |
---|
| 86 | #include <vmem.h> |
---|
[412] | 87 | #include <pmem.h> |
---|
[258] | 88 | #include <utils.h> |
---|
[460] | 89 | #include <tty0.h> |
---|
[493] | 90 | #include <kernel_locks.h> |
---|
| 91 | #include <kernel_barriers.h> |
---|
[258] | 92 | #include <elf-types.h> |
---|
| 93 | #include <fat32.h> |
---|
| 94 | #include <mips32_registers.h> |
---|
| 95 | #include <stdarg.h> |
---|
| 96 | |
---|
[263] | 97 | #if !defined(X_SIZE) |
---|
[359] | 98 | # error: The X_SIZE value must be defined in the 'hard_config.h' file ! |
---|
[258] | 99 | #endif |
---|
| 100 | |
---|
[263] | 101 | #if !defined(Y_SIZE) |
---|
[359] | 102 | # error: The Y_SIZE value must be defined in the 'hard_config.h' file ! |
---|
[263] | 103 | #endif |
---|
| 104 | |
---|
| 105 | #if !defined(X_WIDTH) |
---|
[359] | 106 | # error: The X_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
[263] | 107 | #endif |
---|
| 108 | |
---|
| 109 | #if !defined(Y_WIDTH) |
---|
[359] | 110 | # error: The Y_WIDTH value must be defined in the 'hard_config.h' file ! |
---|
[263] | 111 | #endif |
---|
| 112 | |
---|
[321] | 113 | #if !defined(SEG_BOOT_MAPPING_BASE) |
---|
[359] | 114 | # error: The SEG_BOOT_MAPPING_BASE value must be defined in the hard_config.h file ! |
---|
[321] | 115 | #endif |
---|
| 116 | |
---|
[359] | 117 | #if !defined(NB_PROCS_MAX) |
---|
| 118 | # error: The NB_PROCS_MAX value must be defined in the 'hard_config.h' file ! |
---|
[321] | 119 | #endif |
---|
| 120 | |
---|
[359] | 121 | #if !defined(GIET_NB_VSPACE_MAX) |
---|
| 122 | # error: The GIET_NB_VSPACE_MAX value must be defined in the 'giet_config.h' file ! |
---|
[321] | 123 | #endif |
---|
| 124 | |
---|
[359] | 125 | #if !defined(GIET_ELF_BUFFER_SIZE) |
---|
| 126 | # error: The GIET_ELF_BUFFER_SIZE value must be defined in the giet_config.h file ! |
---|
[258] | 127 | #endif |
---|
| 128 | |
---|
| 129 | //////////////////////////////////////////////////////////////////////////// |
---|
| 130 | // Global variables for boot code |
---|
| 131 | //////////////////////////////////////////////////////////////////////////// |
---|
| 132 | |
---|
[412] | 133 | // Temporaty buffer used to load one complete .elf file |
---|
[493] | 134 | __attribute__((section(".kdata"))) |
---|
[757] | 135 | unsigned char _boot_elf_buffer[GIET_ELF_BUFFER_SIZE] __attribute__((aligned(64))); |
---|
[258] | 136 | |
---|
[412] | 137 | // Physical memory allocators array (one per cluster) |
---|
[493] | 138 | __attribute__((section(".kdata"))) |
---|
[757] | 139 | pmem_alloc_t _boot_pmem_alloc[X_SIZE][Y_SIZE]; |
---|
[258] | 140 | |
---|
[412] | 141 | // Schedulers virtual base addresses array (one per processor) |
---|
[493] | 142 | __attribute__((section(".kdata"))) |
---|
| 143 | static_scheduler_t* _schedulers[X_SIZE][Y_SIZE][NB_PROCS_MAX]; |
---|
[258] | 144 | |
---|
[527] | 145 | // Page tables virtual base addresses (one per vspace and per cluster) |
---|
[493] | 146 | __attribute__((section(".kdata"))) |
---|
| 147 | unsigned int _ptabs_vaddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[258] | 148 | |
---|
[412] | 149 | // Page tables physical base addresses (one per vspace and per cluster) |
---|
[493] | 150 | __attribute__((section(".kdata"))) |
---|
[757] | 151 | unsigned long long _ptabs_paddr[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[258] | 152 | |
---|
[412] | 153 | // Page tables pt2 allocators (one per vspace and per cluster) |
---|
[493] | 154 | __attribute__((section(".kdata"))) |
---|
| 155 | unsigned int _ptabs_next_pt2[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[263] | 156 | |
---|
[412] | 157 | // Page tables max_pt2 (same value for all page tables) |
---|
[493] | 158 | __attribute__((section(".kdata"))) |
---|
| 159 | unsigned int _ptabs_max_pt2; |
---|
[412] | 160 | |
---|
[493] | 161 | // boot code uses a spin lock to protect TTY0 |
---|
| 162 | __attribute__((section(".kdata"))) |
---|
| 163 | unsigned int _tty0_boot_mode = 1; |
---|
[490] | 164 | |
---|
[716] | 165 | // boot code does not uses a lock to protect HBA command list |
---|
[493] | 166 | __attribute__((section(".kdata"))) |
---|
[578] | 167 | unsigned int _hba_boot_mode = 1; |
---|
| 168 | |
---|
[709] | 169 | // required for concurrent PTAB building |
---|
[578] | 170 | __attribute__((section(".kdata"))) |
---|
[493] | 171 | spin_lock_t _ptabs_spin_lock[GIET_NB_VSPACE_MAX][X_SIZE][Y_SIZE]; |
---|
[490] | 172 | |
---|
[493] | 173 | // barrier used by boot code for parallel execution |
---|
| 174 | __attribute__((section(".kdata"))) |
---|
| 175 | simple_barrier_t _barrier_all_clusters; |
---|
[490] | 176 | |
---|
[527] | 177 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 178 | // Extern variables |
---|
| 179 | ////////////////////////////////////////////////////////////////////////////// |
---|
| 180 | |
---|
[631] | 181 | // this variable is allocated in the tty0.c file |
---|
[493] | 182 | extern spin_lock_t _tty0_spin_lock; |
---|
[464] | 183 | |
---|
[631] | 184 | // this variable is allocated in the mmc_driver.c |
---|
| 185 | extern unsigned int _mmc_boot_mode; |
---|
| 186 | |
---|
[716] | 187 | // these variables are allocated in the bdv_driver.c file |
---|
| 188 | extern spin_lock_t _bdv_lock __attribute__((aligned(64))); |
---|
| 189 | extern unsigned int _bdv_trdid; |
---|
| 190 | extern unsigned int _bdv_status; |
---|
| 191 | |
---|
[527] | 192 | extern void boot_entry(); |
---|
| 193 | |
---|
[412] | 194 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 195 | // Align the value of paddr or vaddr to the required alignement, |
---|
| 196 | // defined by alignPow2 == L2(alignement). |
---|
[412] | 197 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 198 | paddr_t paddr_align_to( paddr_t paddr, unsigned int alignPow2 ) |
---|
[258] | 199 | { |
---|
| 200 | paddr_t mask = (1 << alignPow2) - 1; |
---|
| 201 | return ((paddr + mask) & ~mask); |
---|
| 202 | } |
---|
| 203 | |
---|
[493] | 204 | unsigned int vaddr_align_to( unsigned int vaddr, unsigned int alignPow2 ) |
---|
[258] | 205 | { |
---|
| 206 | unsigned int mask = (1 << alignPow2) - 1; |
---|
| 207 | return ((vaddr + mask) & ~mask); |
---|
| 208 | } |
---|
| 209 | |
---|
[412] | 210 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
| 211 | // This function map a vseg identified by the vseg pointer. |
---|
| 212 | // |
---|
[493] | 213 | // A given vseg can be mapped in a Big Physical Pages (BPP: 2 Mbytes) or in a |
---|
[732] | 214 | // Small Physical Pages (SPP: 4 Kbytes), depending on the "big" attribute of vseg. |
---|
[412] | 215 | // |
---|
[732] | 216 | // All boot vsegs are packed in a single BPP (2 Mbytes). For all other vsegs, |
---|
| 217 | // there is only one vseg in a given page (BPP or SPP), but a single vseg can |
---|
| 218 | // cover several contiguous physical pages. |
---|
| 219 | // Only the vsegs used by the boot code can be identity mapping. |
---|
| 220 | // |
---|
[513] | 221 | // 1) First step: it computes various vseg attributes and checks |
---|
| 222 | // alignment constraints. |
---|
[412] | 223 | // |
---|
[493] | 224 | // 2) Second step: it allocates the required number of contiguous physical pages, |
---|
[412] | 225 | // computes the physical base address (if the vseg is not identity mapping), |
---|
[732] | 226 | // register it in the vseg pbase field, and update the page table(s). |
---|
[412] | 227 | // |
---|
[732] | 228 | // 3) Third step (only for vseg that have the VSEG_TYPE_PTAB): for a given cluster, |
---|
| 229 | // the M page tables associated to the M vspaces are packed in the same vseg. |
---|
[493] | 230 | // We divide this vseg in M sub-segments, and compute the vbase and pbase |
---|
| 231 | // addresses for M page tables, and register these addresses in the _ptabs_paddr |
---|
[412] | 232 | // and _ptabs_vaddr arrays. |
---|
| 233 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
[427] | 234 | void boot_vseg_map( mapping_vseg_t* vseg, |
---|
| 235 | unsigned int vspace_id ) |
---|
[258] | 236 | { |
---|
[412] | 237 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 238 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 239 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
[258] | 240 | |
---|
[513] | 241 | //////////// First step : compute vseg attributes |
---|
| 242 | |
---|
[412] | 243 | // compute destination cluster pointer & coordinates |
---|
| 244 | pseg = pseg + vseg->psegid; |
---|
| 245 | cluster = cluster + pseg->clusterid; |
---|
| 246 | unsigned int x_dest = cluster->x; |
---|
| 247 | unsigned int y_dest = cluster->y; |
---|
[258] | 248 | |
---|
[412] | 249 | // compute the "big" vseg attribute |
---|
| 250 | unsigned int big = vseg->big; |
---|
[258] | 251 | |
---|
[513] | 252 | // all vsegs must be aligned on 4Kbytes |
---|
| 253 | if ( vseg->vbase & 0x00000FFF ) |
---|
| 254 | { |
---|
| 255 | _printf("\n[BOOT ERROR] vseg %s not aligned : vbase = %x\n", |
---|
| 256 | vseg->name, vseg->vbase ); |
---|
| 257 | _exit(); |
---|
| 258 | } |
---|
| 259 | |
---|
[412] | 260 | // compute the "is_ram" vseg attribute |
---|
| 261 | unsigned int is_ram; |
---|
| 262 | if ( pseg->type == PSEG_TYPE_RAM ) is_ram = 1; |
---|
| 263 | else is_ram = 0; |
---|
[258] | 264 | |
---|
[412] | 265 | // compute the "is_ptab" attribute |
---|
| 266 | unsigned int is_ptab; |
---|
[513] | 267 | if ( vseg->type == VSEG_TYPE_PTAB ) is_ptab = 1; |
---|
| 268 | else is_ptab = 0; |
---|
[258] | 269 | |
---|
[427] | 270 | // compute actual vspace index |
---|
| 271 | unsigned int vsid; |
---|
| 272 | if ( vspace_id == 0xFFFFFFFF ) vsid = 0; |
---|
| 273 | else vsid = vspace_id; |
---|
| 274 | |
---|
[412] | 275 | //////////// Second step : compute ppn and npages |
---|
| 276 | //////////// - if identity mapping : ppn <= vpn |
---|
| 277 | //////////// - if vseg is periph : ppn <= pseg.base >> 12 |
---|
| 278 | //////////// - if vseg is ram : ppn <= physical memory allocator |
---|
[258] | 279 | |
---|
[493] | 280 | unsigned int ppn; // first physical page index (28 bits = |x|y|bppi|sppi|) |
---|
| 281 | unsigned int vpn; // first virtual page index (20 bits = |ix1|ix2|) |
---|
| 282 | unsigned int vpn_max; // last virtual page index (20 bits = |ix1|ix2|) |
---|
[258] | 283 | |
---|
[412] | 284 | vpn = vseg->vbase >> 12; |
---|
| 285 | vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
[258] | 286 | |
---|
[412] | 287 | // compute npages |
---|
| 288 | unsigned int npages; // number of required (big or small) pages |
---|
| 289 | if ( big == 0 ) npages = vpn_max - vpn + 1; // number of small pages |
---|
| 290 | else npages = (vpn_max>>9) - (vpn>>9) + 1; // number of big pages |
---|
| 291 | |
---|
| 292 | // compute ppn |
---|
[732] | 293 | if ( vseg->ident ) // identity mapping : no memory allocation required |
---|
[258] | 294 | { |
---|
[412] | 295 | ppn = vpn; |
---|
[258] | 296 | } |
---|
[412] | 297 | else // not identity mapping |
---|
[258] | 298 | { |
---|
[412] | 299 | if ( is_ram ) // RAM : physical memory allocation required |
---|
[258] | 300 | { |
---|
[412] | 301 | // compute pointer on physical memory allocator in dest cluster |
---|
[757] | 302 | pmem_alloc_t* palloc = &_boot_pmem_alloc[x_dest][y_dest]; |
---|
[258] | 303 | |
---|
[732] | 304 | if ( big == 0 ) // allocate contiguous SPPs |
---|
[412] | 305 | { |
---|
| 306 | ppn = _get_small_ppn( palloc, npages ); |
---|
| 307 | } |
---|
[732] | 308 | else // allocate contiguous BPPs |
---|
[412] | 309 | { |
---|
[732] | 310 | ppn = _get_big_ppn( palloc, npages ); |
---|
[412] | 311 | } |
---|
[258] | 312 | } |
---|
[412] | 313 | else // PERI : no memory allocation required |
---|
[258] | 314 | { |
---|
[412] | 315 | ppn = pseg->base >> 12; |
---|
[258] | 316 | } |
---|
| 317 | } |
---|
| 318 | |
---|
[732] | 319 | // update vseg.pbase field and register vseg mapped |
---|
[412] | 320 | vseg->pbase = ((paddr_t)ppn) << 12; |
---|
[493] | 321 | vseg->mapped = 1; |
---|
[258] | 322 | |
---|
[412] | 323 | //////////// Third step : (only if the vseg is a page table) |
---|
| 324 | //////////// - compute the physical & virtual base address for each vspace |
---|
| 325 | //////////// by dividing the vseg in several sub-segments. |
---|
| 326 | //////////// - register it in _ptabs_vaddr & _ptabs_paddr arrays, |
---|
[427] | 327 | //////////// and initialize next_pt2 allocators. |
---|
| 328 | //////////// - reset all entries in first level page tables |
---|
[412] | 329 | |
---|
| 330 | if ( is_ptab ) |
---|
[258] | 331 | { |
---|
[412] | 332 | unsigned int vs; // vspace index |
---|
| 333 | unsigned int nspaces; // number of vspaces |
---|
| 334 | unsigned int nsp; // number of small pages for one PTAB |
---|
| 335 | unsigned int offset; // address offset for current PTAB |
---|
[258] | 336 | |
---|
[412] | 337 | nspaces = header->vspaces; |
---|
| 338 | offset = 0; |
---|
[258] | 339 | |
---|
[757] | 340 | // compute max_pt2: each PTAB must be aligned on a 8 Kbytes boundary |
---|
[427] | 341 | nsp = ( vseg->length >> 12 ) / nspaces; |
---|
[412] | 342 | if ( (nsp & 0x1) == 0x1 ) nsp = nsp - 1; |
---|
| 343 | _ptabs_max_pt2 = ((nsp<<12) - PT1_SIZE) / PT2_SIZE; |
---|
[433] | 344 | |
---|
[757] | 345 | // save max_pt2 in header |
---|
| 346 | header->max_pt2 = _ptabs_max_pt2; |
---|
| 347 | |
---|
[412] | 348 | for ( vs = 0 ; vs < nspaces ; vs++ ) |
---|
[258] | 349 | { |
---|
[433] | 350 | _ptabs_vaddr [vs][x_dest][y_dest] = (vpn + offset) << 12; |
---|
[412] | 351 | _ptabs_paddr [vs][x_dest][y_dest] = ((paddr_t)(ppn + offset)) << 12; |
---|
| 352 | _ptabs_next_pt2[vs][x_dest][y_dest] = 0; |
---|
[427] | 353 | offset += nsp; |
---|
[433] | 354 | |
---|
[427] | 355 | // reset all entries in PT1 (8 Kbytes) |
---|
| 356 | _physical_memset( _ptabs_paddr[vs][x_dest][y_dest], PT1_SIZE, 0 ); |
---|
[258] | 357 | } |
---|
| 358 | } |
---|
| 359 | |
---|
[493] | 360 | asm volatile ("sync"); |
---|
| 361 | |
---|
[412] | 362 | #if BOOT_DEBUG_PT |
---|
[493] | 363 | if ( big ) |
---|
| 364 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
| 365 | "vbase = %x / length = %x / BIG / npages = %d / pbase = %l\n", |
---|
| 366 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
| 367 | else |
---|
| 368 | _printf("\n[BOOT] vseg %s : cluster[%d,%d] / " |
---|
| 369 | "vbase = %x / length = %x / SMALL / npages = %d / pbase = %l\n", |
---|
| 370 | vseg->name, x_dest, y_dest, vseg->vbase, vseg->length, npages, vseg-> pbase ); |
---|
[412] | 371 | #endif |
---|
| 372 | |
---|
| 373 | } // end boot_vseg_map() |
---|
| 374 | |
---|
| 375 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 376 | // For the vseg defined by the vseg pointer, this function register PTEs |
---|
[412] | 377 | // in one or several page tables. |
---|
[436] | 378 | // It is a global vseg (kernel vseg) if (vspace_id == 0xFFFFFFFF). |
---|
[412] | 379 | // The number of involved PTABs depends on the "local" and "global" attributes: |
---|
| 380 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
[493] | 381 | // - PTEs are replicated in all clusters containing procs for a non local vseg. |
---|
[412] | 382 | ///////////////////////////////////////////////////////////////////////////////////// |
---|
[427] | 383 | void boot_vseg_pte( mapping_vseg_t* vseg, |
---|
| 384 | unsigned int vspace_id ) |
---|
[412] | 385 | { |
---|
| 386 | // compute the "global" vseg attribute and actual vspace index |
---|
| 387 | unsigned int global; |
---|
| 388 | unsigned int vsid; |
---|
| 389 | if ( vspace_id == 0xFFFFFFFF ) |
---|
[258] | 390 | { |
---|
[412] | 391 | global = 1; |
---|
| 392 | vsid = 0; |
---|
[258] | 393 | } |
---|
[412] | 394 | else |
---|
[258] | 395 | { |
---|
[412] | 396 | global = 0; |
---|
| 397 | vsid = vspace_id; |
---|
[258] | 398 | } |
---|
| 399 | |
---|
[412] | 400 | // compute the "local" and "big" attributes |
---|
| 401 | unsigned int local = vseg->local; |
---|
| 402 | unsigned int big = vseg->big; |
---|
[258] | 403 | |
---|
[412] | 404 | // compute vseg flags |
---|
[493] | 405 | // The three flags (Local, Remote and Dirty) are set to 1 |
---|
| 406 | // to avoid hardware update for these flags, because GIET_VM |
---|
| 407 | // does use these flags. |
---|
[412] | 408 | unsigned int flags = 0; |
---|
| 409 | if (vseg->mode & C_MODE_MASK) flags |= PTE_C; |
---|
| 410 | if (vseg->mode & X_MODE_MASK) flags |= PTE_X; |
---|
| 411 | if (vseg->mode & W_MODE_MASK) flags |= PTE_W; |
---|
| 412 | if (vseg->mode & U_MODE_MASK) flags |= PTE_U; |
---|
| 413 | if ( global ) flags |= PTE_G; |
---|
| 414 | flags |= PTE_L; |
---|
| 415 | flags |= PTE_R; |
---|
| 416 | flags |= PTE_D; |
---|
[258] | 417 | |
---|
[412] | 418 | // compute VPN, PPN and number of pages (big or small) |
---|
| 419 | unsigned int vpn = vseg->vbase >> 12; |
---|
| 420 | unsigned int vpn_max = (vseg->vbase + vseg->length - 1) >> 12; |
---|
| 421 | unsigned int ppn = (unsigned int)(vseg->pbase >> 12); |
---|
| 422 | unsigned int npages; |
---|
| 423 | if ( big == 0 ) npages = vpn_max - vpn + 1; |
---|
| 424 | else npages = (vpn_max>>9) - (vpn>>9) + 1; |
---|
| 425 | |
---|
[493] | 426 | // compute destination cluster coordinates, for local vsegs |
---|
| 427 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 428 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 429 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
| 430 | mapping_pseg_t* pseg_dest = &pseg[vseg->psegid]; |
---|
| 431 | mapping_cluster_t* cluster_dest = &cluster[pseg_dest->clusterid]; |
---|
| 432 | unsigned int x_dest = cluster_dest->x; |
---|
| 433 | unsigned int y_dest = cluster_dest->y; |
---|
[412] | 434 | |
---|
[493] | 435 | unsigned int p; // iterator for physical page index |
---|
| 436 | unsigned int x; // iterator for cluster x coordinate |
---|
| 437 | unsigned int y; // iterator for cluster y coordinate |
---|
| 438 | unsigned int v; // iterator for vspace index |
---|
[412] | 439 | |
---|
| 440 | // loop on PTEs |
---|
| 441 | for ( p = 0 ; p < npages ; p++ ) |
---|
| 442 | { |
---|
| 443 | if ( (local != 0) && (global == 0) ) // one cluster / one vspace |
---|
[258] | 444 | { |
---|
[412] | 445 | if ( big ) // big pages => PTE1s |
---|
| 446 | { |
---|
[757] | 447 | _v2p_add_pte1( vsid, |
---|
[412] | 448 | x_dest, |
---|
| 449 | y_dest, |
---|
| 450 | vpn + (p<<9), |
---|
| 451 | flags, |
---|
[732] | 452 | ppn + (p<<9), |
---|
| 453 | vseg->ident ); |
---|
[412] | 454 | } |
---|
| 455 | else // small pages => PTE2s |
---|
| 456 | { |
---|
[757] | 457 | _v2p_add_pte2( vsid, |
---|
[412] | 458 | x_dest, |
---|
| 459 | y_dest, |
---|
| 460 | vpn + p, |
---|
| 461 | flags, |
---|
[732] | 462 | ppn + p, |
---|
| 463 | vseg->ident ); |
---|
[412] | 464 | } |
---|
[258] | 465 | } |
---|
[412] | 466 | else if ( (local == 0) && (global == 0) ) // all clusters / one vspace |
---|
[258] | 467 | { |
---|
[412] | 468 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
[258] | 469 | { |
---|
[412] | 470 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
| 471 | { |
---|
[493] | 472 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
[412] | 473 | { |
---|
[493] | 474 | if ( big ) // big pages => PTE1s |
---|
| 475 | { |
---|
[757] | 476 | _v2p_add_pte1( vsid, |
---|
[493] | 477 | x, |
---|
| 478 | y, |
---|
| 479 | vpn + (p<<9), |
---|
| 480 | flags, |
---|
[732] | 481 | ppn + (p<<9), |
---|
| 482 | vseg->ident ); |
---|
[493] | 483 | } |
---|
| 484 | else // small pages => PTE2s |
---|
| 485 | { |
---|
[757] | 486 | _v2p_add_pte2( vsid, |
---|
[493] | 487 | x, |
---|
| 488 | y, |
---|
| 489 | vpn + p, |
---|
| 490 | flags, |
---|
[732] | 491 | ppn + p, |
---|
| 492 | vseg->ident ); |
---|
[493] | 493 | } |
---|
[412] | 494 | } |
---|
| 495 | } |
---|
[258] | 496 | } |
---|
[412] | 497 | } |
---|
| 498 | else if ( (local != 0) && (global != 0) ) // one cluster / all vspaces |
---|
| 499 | { |
---|
| 500 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
[258] | 501 | { |
---|
[412] | 502 | if ( big ) // big pages => PTE1s |
---|
| 503 | { |
---|
[757] | 504 | _v2p_add_pte1( v, |
---|
[412] | 505 | x_dest, |
---|
| 506 | y_dest, |
---|
| 507 | vpn + (p<<9), |
---|
| 508 | flags, |
---|
[732] | 509 | ppn + (p<<9), |
---|
| 510 | vseg->ident ); |
---|
[412] | 511 | } |
---|
| 512 | else // small pages = PTE2s |
---|
| 513 | { |
---|
[757] | 514 | _v2p_add_pte2( v, |
---|
[412] | 515 | x_dest, |
---|
| 516 | y_dest, |
---|
| 517 | vpn + p, |
---|
| 518 | flags, |
---|
[732] | 519 | ppn + p, |
---|
| 520 | vseg->ident ); |
---|
[412] | 521 | } |
---|
[258] | 522 | } |
---|
[412] | 523 | } |
---|
| 524 | else if ( (local == 0) && (global != 0) ) // all clusters / all vspaces |
---|
| 525 | { |
---|
| 526 | for ( x = 0 ; x < X_SIZE ; x++ ) |
---|
[258] | 527 | { |
---|
[412] | 528 | for ( y = 0 ; y < Y_SIZE ; y++ ) |
---|
| 529 | { |
---|
[493] | 530 | if ( cluster[(x * Y_SIZE) + y].procs ) |
---|
[412] | 531 | { |
---|
[493] | 532 | for ( v = 0 ; v < header->vspaces ; v++ ) |
---|
[412] | 533 | { |
---|
[493] | 534 | if ( big ) // big pages => PTE1s |
---|
| 535 | { |
---|
[757] | 536 | _v2p_add_pte1( v, |
---|
[493] | 537 | x, |
---|
| 538 | y, |
---|
| 539 | vpn + (p<<9), |
---|
| 540 | flags, |
---|
[732] | 541 | ppn + (p<<9), |
---|
| 542 | vseg->ident ); |
---|
[493] | 543 | } |
---|
| 544 | else // small pages -> PTE2s |
---|
| 545 | { |
---|
[757] | 546 | _v2p_add_pte2( v, |
---|
[493] | 547 | x, |
---|
| 548 | y, |
---|
| 549 | vpn + p, |
---|
| 550 | flags, |
---|
[732] | 551 | ppn + p, |
---|
| 552 | vseg->ident ); |
---|
[493] | 553 | } |
---|
[412] | 554 | } |
---|
| 555 | } |
---|
| 556 | } |
---|
[258] | 557 | } |
---|
| 558 | } |
---|
[412] | 559 | } // end for pages |
---|
[493] | 560 | |
---|
| 561 | asm volatile ("sync"); |
---|
| 562 | |
---|
[427] | 563 | } // end boot_vseg_pte() |
---|
[258] | 564 | |
---|
[493] | 565 | |
---|
[412] | 566 | /////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 567 | // This function is executed by processor[x][y][0] in each cluster |
---|
| 568 | // containing at least one processor. |
---|
| 569 | // It initialises all page table for all global or private vsegs |
---|
| 570 | // mapped in cluster[x][y], as specified in the mapping. |
---|
[412] | 571 | // In each cluster all page tables for the different vspaces must be |
---|
| 572 | // packed in one vseg occupying one single BPP (Big Physical Page). |
---|
[490] | 573 | // |
---|
[412] | 574 | // For each vseg, the mapping is done in two steps: |
---|
[436] | 575 | // 1) mapping : the boot_vseg_map() function allocates contiguous BPPs |
---|
[412] | 576 | // or SPPs (if the vseg is not associated to a peripheral), and register |
---|
| 577 | // the physical base address in the vseg pbase field. It initialises the |
---|
[493] | 578 | // _ptabs_vaddr[] and _ptabs_paddr[] arrays if the vseg is a PTAB. |
---|
[412] | 579 | // |
---|
[436] | 580 | // 2) page table initialisation : the boot_vseg_pte() function initialise |
---|
[412] | 581 | // the PTEs (both PTE1 and PTE2) in one or several page tables: |
---|
| 582 | // - PTEs are replicated in all vspaces for a global vseg. |
---|
| 583 | // - PTEs are replicated in all clusters for a non local vseg. |
---|
| 584 | // |
---|
| 585 | // We must handle vsegs in the following order |
---|
[493] | 586 | // 1) global vseg containing PTAB mapped in cluster[x][y], |
---|
| 587 | // 2) global vsegs occupying more than one BPP mapped in cluster[x][y], |
---|
| 588 | // 3) others global vsegs mapped in cluster[x][y], |
---|
| 589 | // 4) all private vsegs in all user spaces mapped in cluster[x][y]. |
---|
[412] | 590 | /////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 591 | void boot_ptab_init( unsigned int cx, |
---|
| 592 | unsigned int cy ) |
---|
[258] | 593 | { |
---|
[412] | 594 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 595 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
| 596 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
[490] | 597 | mapping_cluster_t* cluster ; |
---|
| 598 | mapping_pseg_t* pseg ; |
---|
[258] | 599 | |
---|
| 600 | unsigned int vspace_id; |
---|
| 601 | unsigned int vseg_id; |
---|
| 602 | |
---|
[490] | 603 | unsigned int procid = _get_procid(); |
---|
| 604 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
| 605 | |
---|
[493] | 606 | if( lpid ) |
---|
[490] | 607 | { |
---|
[493] | 608 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
| 609 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
[490] | 610 | _exit(); |
---|
| 611 | } |
---|
| 612 | |
---|
[493] | 613 | if ( header->vspaces == 0 ) |
---|
[258] | 614 | { |
---|
[493] | 615 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
| 616 | "mapping %s contains no vspace\n", header->name ); |
---|
[258] | 617 | _exit(); |
---|
| 618 | } |
---|
| 619 | |
---|
[493] | 620 | ///////// Phase 1 : global vseg containing the PTAB (two barriers required) |
---|
[412] | 621 | |
---|
[513] | 622 | // get PTAB global vseg in cluster(cx,cy) |
---|
[493] | 623 | unsigned int found = 0; |
---|
[412] | 624 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
| 625 | { |
---|
[490] | 626 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 627 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[513] | 628 | if ( (vseg[vseg_id].type == VSEG_TYPE_PTAB) && |
---|
[493] | 629 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
[412] | 630 | { |
---|
[493] | 631 | found = 1; |
---|
| 632 | break; |
---|
[412] | 633 | } |
---|
| 634 | } |
---|
[493] | 635 | if ( found == 0 ) |
---|
[258] | 636 | { |
---|
[493] | 637 | _printf("\n[BOOT ERROR] in boot_ptab_init() : " |
---|
| 638 | "cluster[%d][%d] contains no PTAB vseg\n", cx , cy ); |
---|
| 639 | _exit(); |
---|
[258] | 640 | } |
---|
| 641 | |
---|
[493] | 642 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[490] | 643 | |
---|
[493] | 644 | ////////////////////////////////////////////// |
---|
| 645 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 646 | ////////////////////////////////////////////// |
---|
[412] | 647 | |
---|
[493] | 648 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[412] | 649 | |
---|
[493] | 650 | ////////////////////////////////////////////// |
---|
| 651 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 652 | ////////////////////////////////////////////// |
---|
| 653 | |
---|
| 654 | ///////// Phase 2 : global vsegs occupying more than one BPP |
---|
| 655 | |
---|
[258] | 656 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
| 657 | { |
---|
[490] | 658 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 659 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[513] | 660 | if ( (vseg[vseg_id].length > 0x200000) && |
---|
[490] | 661 | (vseg[vseg_id].mapped == 0) && |
---|
[493] | 662 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
[412] | 663 | { |
---|
[427] | 664 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
| 665 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[412] | 666 | } |
---|
[258] | 667 | } |
---|
| 668 | |
---|
[493] | 669 | ///////// Phase 3 : all others global vsegs |
---|
[347] | 670 | |
---|
[412] | 671 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
[493] | 672 | { |
---|
[490] | 673 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 674 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
[493] | 675 | if ( (vseg[vseg_id].mapped == 0) && |
---|
| 676 | (cluster->x == cx) && (cluster->y == cy) ) |
---|
[412] | 677 | { |
---|
[427] | 678 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
| 679 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[412] | 680 | } |
---|
| 681 | } |
---|
| 682 | |
---|
[493] | 683 | ///////// Phase 4 : all private vsegs |
---|
[412] | 684 | |
---|
[258] | 685 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
| 686 | { |
---|
| 687 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
| 688 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
| 689 | vseg_id++) |
---|
| 690 | { |
---|
[757] | 691 | if ( vseg[vseg_id].type == VSEG_TYPE_MMAP ) // no static mapping |
---|
[490] | 692 | { |
---|
[757] | 693 | // psegid used as page allocator in MMAP vseg |
---|
| 694 | vseg[vseg_id].psegid = 0; |
---|
[490] | 695 | } |
---|
[757] | 696 | else // static mapping |
---|
| 697 | { |
---|
| 698 | pseg = _get_pseg_base(header) + vseg[vseg_id].psegid; |
---|
| 699 | cluster = _get_cluster_base(header) + pseg->clusterid; |
---|
| 700 | if ( (cluster->x == cx) && (cluster->y == cy) ) |
---|
| 701 | { |
---|
| 702 | boot_vseg_map( &vseg[vseg_id], vspace_id ); |
---|
| 703 | boot_vseg_pte( &vseg[vseg_id], vspace_id ); |
---|
| 704 | } |
---|
| 705 | } |
---|
[258] | 706 | } |
---|
| 707 | } |
---|
| 708 | |
---|
[493] | 709 | ////////////////////////////////////////////// |
---|
| 710 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 711 | ////////////////////////////////////////////// |
---|
[258] | 712 | |
---|
[493] | 713 | } // end boot_ptab_init() |
---|
[258] | 714 | |
---|
[493] | 715 | //////////////////////////////////////////////////////////////////////////////// |
---|
[791] | 716 | // This function should be executed by P[0][0][0] only. It completes the |
---|
[493] | 717 | // page table initialisation, taking care of all global vsegs that are |
---|
| 718 | // not mapped in a cluster containing a processor, and have not been |
---|
| 719 | // handled by the boot_ptab_init(x,y) function. |
---|
| 720 | // An example of such vsegs are the external peripherals in TSAR_LETI platform. |
---|
| 721 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 722 | void boot_ptab_extend() |
---|
[258] | 723 | { |
---|
| 724 | |
---|
[493] | 725 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 726 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
[258] | 727 | |
---|
[493] | 728 | unsigned int vseg_id; |
---|
| 729 | |
---|
| 730 | for (vseg_id = 0; vseg_id < header->globals; vseg_id++) |
---|
[258] | 731 | { |
---|
[493] | 732 | if ( vseg[vseg_id].mapped == 0 ) |
---|
[258] | 733 | { |
---|
[493] | 734 | boot_vseg_map( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
| 735 | boot_vseg_pte( &vseg[vseg_id], 0xFFFFFFFF ); |
---|
[452] | 736 | } |
---|
| 737 | } |
---|
[493] | 738 | } // end boot_ptab_extend() |
---|
[258] | 739 | |
---|
| 740 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 741 | // This function returns in the vbase and length buffers the virtual base |
---|
| 742 | // address and the length of the segment allocated to the schedulers array |
---|
| 743 | // in the cluster defined by the clusterid argument. |
---|
| 744 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 745 | void boot_get_sched_vaddr( unsigned int cluster_id, |
---|
| 746 | unsigned int* vbase, |
---|
| 747 | unsigned int* length ) |
---|
| 748 | { |
---|
[321] | 749 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
[258] | 750 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
| 751 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
| 752 | |
---|
| 753 | unsigned int vseg_id; |
---|
| 754 | unsigned int found = 0; |
---|
| 755 | |
---|
| 756 | for ( vseg_id = 0 ; (vseg_id < header->vsegs) && (found == 0) ; vseg_id++ ) |
---|
| 757 | { |
---|
[513] | 758 | if ( (vseg[vseg_id].type == VSEG_TYPE_SCHED) && |
---|
[263] | 759 | (pseg[vseg[vseg_id].psegid].clusterid == cluster_id ) ) |
---|
[258] | 760 | { |
---|
| 761 | *vbase = vseg[vseg_id].vbase; |
---|
[513] | 762 | *length = vseg[vseg_id].length; |
---|
[258] | 763 | found = 1; |
---|
| 764 | } |
---|
| 765 | } |
---|
| 766 | if ( found == 0 ) |
---|
| 767 | { |
---|
[263] | 768 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
[513] | 769 | _printf("\n[BOOT ERROR] No vseg of type SCHED in cluster [%d,%d]\n", |
---|
[493] | 770 | cluster[cluster_id].x, cluster[cluster_id].y ); |
---|
[258] | 771 | _exit(); |
---|
| 772 | } |
---|
| 773 | } // end boot_get_sched_vaddr() |
---|
| 774 | |
---|
[527] | 775 | #if BOOT_DEBUG_SCHED |
---|
| 776 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 777 | // This debug function should be executed by only one procesor. |
---|
| 778 | // It loops on all processors in all clusters to display |
---|
| 779 | // the HWI / PTI / WTI interrupt vectors for each processor. |
---|
| 780 | ///////////////////////////////////////////////////////////////////////////// |
---|
| 781 | void boot_sched_irq_display() |
---|
| 782 | { |
---|
| 783 | unsigned int cx; |
---|
| 784 | unsigned int cy; |
---|
| 785 | unsigned int lpid; |
---|
| 786 | unsigned int slot; |
---|
| 787 | unsigned int entry; |
---|
[564] | 788 | unsigned int type; |
---|
| 789 | unsigned int channel; |
---|
[527] | 790 | |
---|
| 791 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 792 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 793 | |
---|
| 794 | static_scheduler_t* psched; |
---|
| 795 | |
---|
| 796 | for ( cx = 0 ; cx < X_SIZE ; cx++ ) |
---|
| 797 | { |
---|
| 798 | for ( cy = 0 ; cy < Y_SIZE ; cy++ ) |
---|
| 799 | { |
---|
| 800 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
| 801 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
| 802 | |
---|
| 803 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 804 | { |
---|
| 805 | psched = _schedulers[cx][cy][lpid]; |
---|
| 806 | |
---|
[564] | 807 | _printf("\n[BOOT] interrupt vectors for proc[%d,%d,%d]\n", |
---|
[527] | 808 | cx , cy , lpid ); |
---|
| 809 | |
---|
| 810 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
| 811 | { |
---|
[564] | 812 | entry = psched->hwi_vector[slot]; |
---|
| 813 | type = entry & 0xFFFF; |
---|
| 814 | channel = entry >> 16; |
---|
| 815 | if ( type != ISR_DEFAULT ) |
---|
| 816 | _printf(" - HWI : index = %d / type = %s / channel = %d\n", |
---|
| 817 | slot , _isr_type_str[type] , channel ); |
---|
[527] | 818 | } |
---|
| 819 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
| 820 | { |
---|
[564] | 821 | entry = psched->wti_vector[slot]; |
---|
| 822 | type = entry & 0xFFFF; |
---|
| 823 | channel = entry >> 16; |
---|
| 824 | if ( type != ISR_DEFAULT ) |
---|
| 825 | _printf(" - WTI : index = %d / type = %s / channel = %d\n", |
---|
| 826 | slot , _isr_type_str[type] , channel ); |
---|
[527] | 827 | } |
---|
| 828 | for ( slot = 0 ; slot < 32 ; slot++ ) |
---|
| 829 | { |
---|
[564] | 830 | entry = psched->pti_vector[slot]; |
---|
| 831 | type = entry & 0xFFFF; |
---|
| 832 | channel = entry >> 16; |
---|
| 833 | if ( type != ISR_DEFAULT ) |
---|
| 834 | _printf(" - PTI : index = %d / type = %s / channel = %d\n", |
---|
| 835 | slot , _isr_type_str[type] , channel ); |
---|
[527] | 836 | } |
---|
| 837 | } |
---|
| 838 | } |
---|
| 839 | } |
---|
| 840 | } // end boot_sched_irq_display() |
---|
| 841 | #endif |
---|
| 842 | |
---|
| 843 | |
---|
[258] | 844 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 845 | // This function is executed in parallel by all processors P[x][y][0]. |
---|
[709] | 846 | // P[x][y][0] initialises all schedulers in cluster[x][y]. The MMU must be activated. |
---|
[493] | 847 | // It is split in two phases separated by a synchronisation barrier. |
---|
[709] | 848 | // - In Step 1, it initialises the _schedulers[x][y][p] pointers array, the |
---|
| 849 | // idle_thread context, the HWI / PTI / WTI interrupt vectors, |
---|
| 850 | // and the XCU HWI / PTI / WTI masks. |
---|
| 851 | // - In Step 2, it scan all threads in all vspaces to complete the threads contexts, |
---|
[493] | 852 | // initialisation as specified in the mapping_info data structure, |
---|
| 853 | // and set the CP0_SCHED register. |
---|
[258] | 854 | //////////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 855 | void boot_scheduler_init( unsigned int x, |
---|
| 856 | unsigned int y ) |
---|
[258] | 857 | { |
---|
[493] | 858 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 859 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 860 | mapping_vspace_t* vspace = _get_vspace_base(header); |
---|
[513] | 861 | mapping_vseg_t* vseg = _get_vseg_base(header); |
---|
[709] | 862 | mapping_thread_t* thread = _get_thread_base(header); |
---|
[493] | 863 | mapping_periph_t* periph = _get_periph_base(header); |
---|
| 864 | mapping_irq_t* irq = _get_irq_base(header); |
---|
[258] | 865 | |
---|
[493] | 866 | unsigned int periph_id; |
---|
| 867 | unsigned int irq_id; |
---|
| 868 | unsigned int vspace_id; |
---|
[513] | 869 | unsigned int vseg_id; |
---|
[709] | 870 | unsigned int thread_id; |
---|
[258] | 871 | |
---|
[493] | 872 | unsigned int sched_vbase; // schedulers array vbase address |
---|
| 873 | unsigned int sched_length; // schedulers array length |
---|
| 874 | static_scheduler_t* psched; // pointer on processor scheduler |
---|
[321] | 875 | |
---|
[527] | 876 | unsigned int cluster_id = (x * Y_SIZE) + y; |
---|
| 877 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
[493] | 878 | unsigned int nprocs = cluster[cluster_id].procs; |
---|
| 879 | unsigned int lpid; |
---|
| 880 | |
---|
[527] | 881 | if ( nprocs > 8 ) |
---|
| 882 | { |
---|
| 883 | _printf("\n[BOOT ERROR] cluster[%d,%d] contains more than 8 procs\n", x, y ); |
---|
| 884 | _exit(); |
---|
| 885 | } |
---|
[258] | 886 | |
---|
[527] | 887 | //////////////////////////////////////////////////////////////////////////////// |
---|
| 888 | // Step 1 : - initialize the schedulers[] array of pointers, |
---|
[709] | 889 | // - initialize the "threads" and "current variables. |
---|
| 890 | // - initialise the idle_thread context. |
---|
[527] | 891 | // - initialize the HWI, PTI and WTI interrupt vectors. |
---|
| 892 | // - initialize the XCU masks for HWI / WTI / PTI interrupts. |
---|
| 893 | // |
---|
| 894 | // The general policy for interrupts routing is the following: |
---|
| 895 | // - the local HWI are statically allocatedted to local processors. |
---|
| 896 | // - the nprocs first PTI are allocated for TICK (one per processor). |
---|
| 897 | // - we allocate 4 WTI per processor: the first one is for WAKUP, |
---|
| 898 | // the 3 others WTI are used for external interrupts (from PIC), |
---|
| 899 | // and are dynamically allocated by kernel on demand. |
---|
| 900 | /////////////////////////////////////////////////////////////////////////////// |
---|
| 901 | |
---|
[493] | 902 | // get scheduler array virtual base address in cluster[x,y] |
---|
| 903 | boot_get_sched_vaddr( cluster_id, &sched_vbase, &sched_length ); |
---|
[321] | 904 | |
---|
[493] | 905 | if ( sched_length < (nprocs<<13) ) // 8 Kbytes per scheduler |
---|
| 906 | { |
---|
[527] | 907 | _printf("\n[BOOT ERROR] Sched segment too small in cluster[%d,%d]\n", |
---|
| 908 | x, y ); |
---|
[493] | 909 | _exit(); |
---|
| 910 | } |
---|
[321] | 911 | |
---|
[493] | 912 | // loop on local processors |
---|
| 913 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
[258] | 914 | { |
---|
[493] | 915 | // get scheduler pointer and initialise the schedulers pointers array |
---|
| 916 | psched = (static_scheduler_t*)(sched_vbase + (lpid<<13)); |
---|
| 917 | _schedulers[x][y][lpid] = psched; |
---|
[258] | 918 | |
---|
[709] | 919 | // initialise the "threads" and "current" variables default values |
---|
| 920 | psched->threads = 0; |
---|
| 921 | psched->current = IDLE_THREAD_INDEX; |
---|
[258] | 922 | |
---|
[527] | 923 | // set default values for HWI / PTI / SWI vectors (valid bit = 0) |
---|
[493] | 924 | unsigned int slot; |
---|
| 925 | for (slot = 0; slot < 32; slot++) |
---|
[258] | 926 | { |
---|
[493] | 927 | psched->hwi_vector[slot] = 0; |
---|
| 928 | psched->pti_vector[slot] = 0; |
---|
| 929 | psched->wti_vector[slot] = 0; |
---|
[258] | 930 | } |
---|
[493] | 931 | |
---|
[709] | 932 | // initializes the idle_thread context: |
---|
| 933 | // - the SR slot is 0xFF03 because this thread run in kernel mode. |
---|
[493] | 934 | // - it uses the page table of vspace[0] |
---|
[709] | 935 | // - it uses the kernel TTY0 terminal |
---|
[493] | 936 | // - slots containing addresses (SP,RA,EPC) are initialised by kernel_init() |
---|
[709] | 937 | // - It is always executable (NORUN == 0) |
---|
[493] | 938 | |
---|
[709] | 939 | psched->context[IDLE_THREAD_INDEX].slot[CTX_CR_ID] = 0; |
---|
| 940 | psched->context[IDLE_THREAD_INDEX].slot[CTX_SR_ID] = 0xFF03; |
---|
| 941 | psched->context[IDLE_THREAD_INDEX].slot[CTX_PTPR_ID] = _ptabs_paddr[0][x][y]>>13; |
---|
| 942 | psched->context[IDLE_THREAD_INDEX].slot[CTX_PTAB_ID] = _ptabs_vaddr[0][x][y]; |
---|
[757] | 943 | psched->context[IDLE_THREAD_INDEX].slot[CTX_NPT2_ID] = _ptabs_next_pt2[0][x][y]; |
---|
[709] | 944 | psched->context[IDLE_THREAD_INDEX].slot[CTX_TTY_ID] = 0; |
---|
| 945 | psched->context[IDLE_THREAD_INDEX].slot[CTX_LTID_ID] = IDLE_THREAD_INDEX; |
---|
| 946 | psched->context[IDLE_THREAD_INDEX].slot[CTX_VSID_ID] = 0; |
---|
| 947 | psched->context[IDLE_THREAD_INDEX].slot[CTX_NORUN_ID] = 0; |
---|
| 948 | psched->context[IDLE_THREAD_INDEX].slot[CTX_SIGS_ID] = 0; |
---|
| 949 | psched->context[IDLE_THREAD_INDEX].slot[CTX_LOCKS_ID] = 0; |
---|
[493] | 950 | } |
---|
| 951 | |
---|
[527] | 952 | // HWI / PTI / WTI masks (up to 8 local processors) |
---|
| 953 | unsigned int hwi_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
| 954 | unsigned int pti_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
| 955 | unsigned int wti_mask[8] = {0,0,0,0,0,0,0,0}; |
---|
| 956 | |
---|
| 957 | // scan local peripherals to get and check local XCU |
---|
[493] | 958 | mapping_periph_t* xcu = NULL; |
---|
[527] | 959 | unsigned int min = cluster[cluster_id].periph_offset ; |
---|
| 960 | unsigned int max = min + cluster[cluster_id].periphs ; |
---|
[493] | 961 | |
---|
[527] | 962 | for ( periph_id = min ; periph_id < max ; periph_id++ ) |
---|
[493] | 963 | { |
---|
| 964 | if( periph[periph_id].type == PERIPH_TYPE_XCU ) |
---|
[258] | 965 | { |
---|
[493] | 966 | xcu = &periph[periph_id]; |
---|
[258] | 967 | |
---|
[527] | 968 | // check nb_hwi_in |
---|
| 969 | if ( xcu->arg0 < xcu->irqs ) |
---|
[295] | 970 | { |
---|
[538] | 971 | _printf("\n[BOOT ERROR] Not enough HWI inputs for XCU[%d,%d]" |
---|
| 972 | " : nb_hwi = %d / nb_irqs = %d\n", |
---|
| 973 | x , y , xcu->arg0 , xcu->irqs ); |
---|
[295] | 974 | _exit(); |
---|
| 975 | } |
---|
[527] | 976 | // check nb_pti_in |
---|
| 977 | if ( xcu->arg2 < nprocs ) |
---|
| 978 | { |
---|
| 979 | _printf("\n[BOOT ERROR] Not enough PTI inputs for XCU[%d,%d]\n", |
---|
| 980 | x, y ); |
---|
| 981 | _exit(); |
---|
| 982 | } |
---|
| 983 | // check nb_wti_in |
---|
| 984 | if ( xcu->arg1 < (4 * nprocs) ) |
---|
| 985 | { |
---|
| 986 | _printf("\n[BOOT ERROR] Not enough WTI inputs for XCU[%d,%d]\n", |
---|
| 987 | x, y ); |
---|
| 988 | _exit(); |
---|
| 989 | } |
---|
| 990 | // check nb_irq_out |
---|
[538] | 991 | if ( xcu->channels < (nprocs * header->irq_per_proc) ) |
---|
[527] | 992 | { |
---|
| 993 | _printf("\n[BOOT ERROR] Not enough outputs for XCU[%d,%d]\n", |
---|
| 994 | x, y ); |
---|
| 995 | _exit(); |
---|
| 996 | } |
---|
[493] | 997 | } |
---|
| 998 | } |
---|
[263] | 999 | |
---|
[493] | 1000 | if ( xcu == NULL ) |
---|
| 1001 | { |
---|
| 1002 | _printf("\n[BOOT ERROR] missing XCU in cluster[%d,%d]\n", x , y ); |
---|
| 1003 | _exit(); |
---|
| 1004 | } |
---|
[321] | 1005 | |
---|
[527] | 1006 | // HWI interrupt vector definition |
---|
| 1007 | // scan HWI connected to local XCU |
---|
[493] | 1008 | // for round-robin allocation to local processors |
---|
| 1009 | lpid = 0; |
---|
| 1010 | for ( irq_id = xcu->irq_offset ; |
---|
| 1011 | irq_id < xcu->irq_offset + xcu->irqs ; |
---|
| 1012 | irq_id++ ) |
---|
| 1013 | { |
---|
| 1014 | unsigned int type = irq[irq_id].srctype; |
---|
| 1015 | unsigned int srcid = irq[irq_id].srcid; |
---|
| 1016 | unsigned int isr = irq[irq_id].isr & 0xFFFF; |
---|
| 1017 | unsigned int channel = irq[irq_id].channel << 16; |
---|
[321] | 1018 | |
---|
[493] | 1019 | if ( (type != IRQ_TYPE_HWI) || (srcid > 31) ) |
---|
| 1020 | { |
---|
| 1021 | _printf("\n[BOOT ERROR] Bad IRQ in cluster[%d,%d]\n", x, y ); |
---|
| 1022 | _exit(); |
---|
| 1023 | } |
---|
[295] | 1024 | |
---|
[527] | 1025 | // register entry in HWI interrupt vector |
---|
| 1026 | _schedulers[x][y][lpid]->hwi_vector[srcid] = isr | channel; |
---|
[295] | 1027 | |
---|
[527] | 1028 | // update XCU HWI mask for P[x,y,lpid] |
---|
| 1029 | hwi_mask[lpid] = hwi_mask[lpid] | (1<<srcid); |
---|
| 1030 | |
---|
[493] | 1031 | lpid = (lpid + 1) % nprocs; |
---|
| 1032 | } // end for irqs |
---|
[412] | 1033 | |
---|
[527] | 1034 | // PTI interrupt vector definition |
---|
| 1035 | // one PTI for TICK per processor |
---|
| 1036 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 1037 | { |
---|
| 1038 | // register entry in PTI interrupt vector |
---|
| 1039 | _schedulers[x][y][lpid]->pti_vector[lpid] = ISR_TICK; |
---|
| 1040 | |
---|
| 1041 | // update XCU PTI mask for P[x,y,lpid] |
---|
| 1042 | pti_mask[lpid] = pti_mask[lpid] | (1<<lpid); |
---|
| 1043 | } |
---|
| 1044 | |
---|
| 1045 | // WTI interrupt vector definition |
---|
| 1046 | // 4 WTI per processor, first for WAKUP |
---|
| 1047 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 1048 | { |
---|
| 1049 | // register WAKUP ISR in WTI interrupt vector |
---|
[552] | 1050 | _schedulers[x][y][lpid]->wti_vector[lpid] = ISR_WAKUP; |
---|
[527] | 1051 | |
---|
| 1052 | // update XCU WTI mask for P[x,y,lpid] (4 entries per proc) |
---|
| 1053 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid )); |
---|
| 1054 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + NB_PROCS_MAX )); |
---|
| 1055 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 2*NB_PROCS_MAX)); |
---|
| 1056 | wti_mask[lpid] = wti_mask[lpid] | (0x1<<(lpid + 3*NB_PROCS_MAX)); |
---|
| 1057 | } |
---|
| 1058 | |
---|
| 1059 | // set the XCU masks for HWI / WTI / PTI interrupts |
---|
| 1060 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
| 1061 | { |
---|
| 1062 | unsigned int channel = lpid * IRQ_PER_PROCESSOR; |
---|
| 1063 | |
---|
| 1064 | _xcu_set_mask( cluster_xy, channel, hwi_mask[lpid], IRQ_TYPE_HWI ); |
---|
| 1065 | _xcu_set_mask( cluster_xy, channel, wti_mask[lpid], IRQ_TYPE_WTI ); |
---|
| 1066 | _xcu_set_mask( cluster_xy, channel, pti_mask[lpid], IRQ_TYPE_PTI ); |
---|
| 1067 | } |
---|
| 1068 | |
---|
[493] | 1069 | ////////////////////////////////////////////// |
---|
| 1070 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1071 | ////////////////////////////////////////////// |
---|
[412] | 1072 | |
---|
[527] | 1073 | #if BOOT_DEBUG_SCHED |
---|
| 1074 | if ( cluster_xy == 0 ) boot_sched_irq_display(); |
---|
| 1075 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1076 | #endif |
---|
| 1077 | |
---|
| 1078 | /////////////////////////////////////////////////////////////////////////////// |
---|
[709] | 1079 | // Step 2 : Initialise the threads context. The context of a thread placed |
---|
[493] | 1080 | // on processor P must be stored in the scheduler of P. |
---|
[709] | 1081 | // For each vspace, this require two nested loops: loop on the threads, |
---|
| 1082 | // and loop on the local processors in cluster[x,y]. |
---|
| 1083 | // We complete the scheduler when the required placement matches |
---|
| 1084 | // the local processor. |
---|
[527] | 1085 | /////////////////////////////////////////////////////////////////////////////// |
---|
[412] | 1086 | |
---|
[493] | 1087 | for (vspace_id = 0; vspace_id < header->vspaces; vspace_id++) |
---|
| 1088 | { |
---|
| 1089 | // We must set the PTPR depending on the vspace, because the start_vector |
---|
| 1090 | // and the stack address are defined in virtual space. |
---|
| 1091 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[vspace_id][x][y] >> 13) ); |
---|
[258] | 1092 | |
---|
[709] | 1093 | // loop on the threads in vspace (thread_id is the global index in mapping) |
---|
| 1094 | for (thread_id = vspace[vspace_id].thread_offset; |
---|
| 1095 | thread_id < (vspace[vspace_id].thread_offset + vspace[vspace_id].threads); |
---|
| 1096 | thread_id++) |
---|
[493] | 1097 | { |
---|
[709] | 1098 | // get the required thread placement coordinates [x,y,p] |
---|
| 1099 | unsigned int req_x = cluster[thread[thread_id].clusterid].x; |
---|
| 1100 | unsigned int req_y = cluster[thread[thread_id].clusterid].y; |
---|
| 1101 | unsigned int req_p = thread[thread_id].proclocid; |
---|
[258] | 1102 | |
---|
[709] | 1103 | // ctx_norun : two conditions to activate a thread |
---|
| 1104 | // - The vspace.active flag is set in the mapping |
---|
| 1105 | // - The thread.is_main flag is set in the mapping |
---|
| 1106 | unsigned int ctx_norun = (unsigned int)(vspace[vspace_id].active == 0) | |
---|
| 1107 | (unsigned int)(thread[thread_id].is_main == 0); |
---|
| 1108 | |
---|
[493] | 1109 | // ctx_ptpr : page table physical base address (shifted by 13 bit) |
---|
| 1110 | unsigned int ctx_ptpr = (_ptabs_paddr[vspace_id][req_x][req_y] >> 13); |
---|
[258] | 1111 | |
---|
[493] | 1112 | // ctx_ptab : page_table virtual base address |
---|
| 1113 | unsigned int ctx_ptab = _ptabs_vaddr[vspace_id][req_x][req_y]; |
---|
[412] | 1114 | |
---|
[757] | 1115 | // ctx_npt2 : page_table PT2 allocator |
---|
| 1116 | unsigned int ctx_npt2 = _ptabs_next_pt2[vspace_id][req_x][req_y]; |
---|
| 1117 | |
---|
[646] | 1118 | // ctx_entry : Get the virtual address of the memory location containing |
---|
[709] | 1119 | // the thread entry point : the start_vector is stored by GCC in the |
---|
| 1120 | // seg_data segment, and we must wait the application.elf loading to get |
---|
[527] | 1121 | // the entry point value... |
---|
[513] | 1122 | vseg_id = vspace[vspace_id].start_vseg_id; |
---|
[709] | 1123 | unsigned int ctx_entry = vseg[vseg_id].vbase + (thread[thread_id].startid)*4; |
---|
[258] | 1124 | |
---|
[513] | 1125 | // ctx_sp : Get the vseg containing the stack |
---|
[709] | 1126 | // allocate 16 slots (64 bytes) for possible arguments. |
---|
| 1127 | vseg_id = thread[thread_id].stack_vseg_id; |
---|
| 1128 | unsigned int ctx_sp = vseg[vseg_id].vbase + vseg[vseg_id].length - 64; |
---|
[493] | 1129 | |
---|
| 1130 | // loop on the local processors |
---|
| 1131 | for ( lpid = 0 ; lpid < nprocs ; lpid++ ) |
---|
[258] | 1132 | { |
---|
[493] | 1133 | if ( (x == req_x) && (y == req_y) && (req_p == lpid) ) // fit |
---|
[295] | 1134 | { |
---|
[493] | 1135 | // pointer on selected scheduler |
---|
| 1136 | psched = _schedulers[x][y][lpid]; |
---|
[258] | 1137 | |
---|
[709] | 1138 | // ltid : compute local thread index in scheduler |
---|
| 1139 | unsigned int ltid = psched->threads; |
---|
[258] | 1140 | |
---|
[709] | 1141 | // update the threads field in scheduler: |
---|
| 1142 | psched->threads = ltid + 1; |
---|
[258] | 1143 | |
---|
[726] | 1144 | // ctx_trdid : compute pthread global identifier |
---|
[709] | 1145 | unsigned int ctx_trdid = x << 24 | y<<16 | lpid<<8 | ltid; |
---|
[321] | 1146 | |
---|
[709] | 1147 | // initializes the thread context |
---|
| 1148 | psched->context[ltid].slot[CTX_CR_ID] = 0; |
---|
| 1149 | psched->context[ltid].slot[CTX_SR_ID] = GIET_SR_INIT_VALUE; |
---|
| 1150 | psched->context[ltid].slot[CTX_SP_ID] = ctx_sp; |
---|
| 1151 | psched->context[ltid].slot[CTX_EPC_ID] = ctx_entry; |
---|
| 1152 | psched->context[ltid].slot[CTX_ENTRY_ID] = ctx_entry; |
---|
| 1153 | psched->context[ltid].slot[CTX_PTPR_ID] = ctx_ptpr; |
---|
| 1154 | psched->context[ltid].slot[CTX_PTAB_ID] = ctx_ptab; |
---|
[757] | 1155 | psched->context[ltid].slot[CTX_NPT2_ID] = ctx_npt2; |
---|
[709] | 1156 | psched->context[ltid].slot[CTX_LTID_ID] = ltid; |
---|
| 1157 | psched->context[ltid].slot[CTX_TRDID_ID] = ctx_trdid; |
---|
| 1158 | psched->context[ltid].slot[CTX_VSID_ID] = vspace_id; |
---|
| 1159 | psched->context[ltid].slot[CTX_NORUN_ID] = ctx_norun; |
---|
| 1160 | psched->context[ltid].slot[CTX_SIGS_ID] = 0; |
---|
| 1161 | psched->context[ltid].slot[CTX_LOCKS_ID] = 0; |
---|
[493] | 1162 | |
---|
[709] | 1163 | psched->context[ltid].slot[CTX_TTY_ID] = 0xFFFFFFFF; |
---|
| 1164 | psched->context[ltid].slot[CTX_CMA_FB_ID] = 0xFFFFFFFF; |
---|
| 1165 | psched->context[ltid].slot[CTX_CMA_RX_ID] = 0xFFFFFFFF; |
---|
| 1166 | psched->context[ltid].slot[CTX_CMA_TX_ID] = 0xFFFFFFFF; |
---|
| 1167 | psched->context[ltid].slot[CTX_NIC_RX_ID] = 0xFFFFFFFF; |
---|
| 1168 | psched->context[ltid].slot[CTX_NIC_TX_ID] = 0xFFFFFFFF; |
---|
| 1169 | psched->context[ltid].slot[CTX_TIM_ID] = 0xFFFFFFFF; |
---|
| 1170 | psched->context[ltid].slot[CTX_HBA_ID] = 0xFFFFFFFF; |
---|
[631] | 1171 | |
---|
[709] | 1172 | // update thread ltid field in the mapping |
---|
| 1173 | thread[thread_id].ltid = ltid; |
---|
| 1174 | |
---|
[493] | 1175 | #if BOOT_DEBUG_SCHED |
---|
[709] | 1176 | _printf("\nThread %s in vspace %s allocated to P[%d,%d,%d]\n" |
---|
[493] | 1177 | " - ctx[LTID] = %d\n" |
---|
[709] | 1178 | " - ctx[TRDID] = %d\n" |
---|
[493] | 1179 | " - ctx[SR] = %x\n" |
---|
| 1180 | " - ctx[SP] = %x\n" |
---|
[646] | 1181 | " - ctx[ENTRY] = %x\n" |
---|
[493] | 1182 | " - ctx[PTPR] = %x\n" |
---|
| 1183 | " - ctx[PTAB] = %x\n" |
---|
[757] | 1184 | " - ctx[NPT2] = %x\n" |
---|
[493] | 1185 | " - ctx[VSID] = %d\n" |
---|
[695] | 1186 | " - ctx[NORUN] = %x\n" |
---|
| 1187 | " - ctx[SIG] = %x\n", |
---|
[709] | 1188 | thread[thread_id].name, |
---|
[493] | 1189 | vspace[vspace_id].name, |
---|
| 1190 | x, y, lpid, |
---|
[709] | 1191 | psched->context[ltid].slot[CTX_LTID_ID], |
---|
| 1192 | psched->context[ltid].slot[CTX_TRDID_ID], |
---|
| 1193 | psched->context[ltid].slot[CTX_SR_ID], |
---|
| 1194 | psched->context[ltid].slot[CTX_SP_ID], |
---|
| 1195 | psched->context[ltid].slot[CTX_ENTRY_ID], |
---|
| 1196 | psched->context[ltid].slot[CTX_PTPR_ID], |
---|
| 1197 | psched->context[ltid].slot[CTX_PTAB_ID], |
---|
[757] | 1198 | psched->context[ltid].slot[CTX_NPT2_ID], |
---|
[709] | 1199 | psched->context[ltid].slot[CTX_VSID_ID], |
---|
| 1200 | psched->context[ltid].slot[CTX_NORUN_ID], |
---|
[732] | 1201 | psched->context[ltid].slot[CTX_SIGS_ID] ); |
---|
[493] | 1202 | #endif |
---|
| 1203 | } // end if FIT |
---|
| 1204 | } // end for loop on local procs |
---|
[709] | 1205 | } // end loop on threads |
---|
[493] | 1206 | } // end loop on vspaces |
---|
| 1207 | } // end boot_scheduler_init() |
---|
| 1208 | |
---|
| 1209 | |
---|
| 1210 | |
---|
[258] | 1211 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1212 | // This function loads the map.bin file from block device. |
---|
| 1213 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1214 | void boot_mapping_init() |
---|
| 1215 | { |
---|
[726] | 1216 | |
---|
| 1217 | #if BOOT_DEBUG_MAPPING |
---|
[791] | 1218 | _printf("\n[BOOT DEBUG] boot_mapping_init() : enter\n"); |
---|
[726] | 1219 | #endif |
---|
| 1220 | |
---|
[590] | 1221 | // load map.bin file into buffer |
---|
| 1222 | if ( _fat_load_no_cache( "map.bin", |
---|
| 1223 | SEG_BOOT_MAPPING_BASE, |
---|
| 1224 | SEG_BOOT_MAPPING_SIZE ) ) |
---|
[258] | 1225 | { |
---|
[493] | 1226 | _printf("\n[BOOT ERROR] : map.bin file not found \n"); |
---|
[258] | 1227 | _exit(); |
---|
| 1228 | } |
---|
| 1229 | |
---|
[477] | 1230 | // check mapping signature, number of clusters, number of vspaces |
---|
| 1231 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1232 | if ( (header->signature != IN_MAPPING_SIGNATURE) || |
---|
| 1233 | (header->x_size != X_SIZE) || |
---|
| 1234 | (header->y_size != Y_SIZE) || |
---|
| 1235 | (header->vspaces > GIET_NB_VSPACE_MAX) ) |
---|
| 1236 | { |
---|
[590] | 1237 | _printf("\n[BOOT ERROR] Illegal mapping : signature = %x\n", header->signature ); |
---|
[524] | 1238 | _exit(); |
---|
| 1239 | } |
---|
[477] | 1240 | |
---|
| 1241 | #if BOOT_DEBUG_MAPPING |
---|
| 1242 | unsigned int line; |
---|
| 1243 | unsigned int* pointer = (unsigned int*)SEG_BOOT_MAPPING_BASE; |
---|
[493] | 1244 | _printf("\n[BOOT] First block of mapping\n"); |
---|
[477] | 1245 | for ( line = 0 ; line < 8 ; line++ ) |
---|
| 1246 | { |
---|
[590] | 1247 | _printf(" | %X | %X | %X | %X | %X | %X | %X | %X |\n", |
---|
[493] | 1248 | *(pointer + 0), |
---|
| 1249 | *(pointer + 1), |
---|
| 1250 | *(pointer + 2), |
---|
| 1251 | *(pointer + 3), |
---|
| 1252 | *(pointer + 4), |
---|
| 1253 | *(pointer + 5), |
---|
| 1254 | *(pointer + 6), |
---|
| 1255 | *(pointer + 7) ); |
---|
| 1256 | |
---|
[477] | 1257 | pointer = pointer + 8; |
---|
| 1258 | } |
---|
| 1259 | #endif |
---|
| 1260 | |
---|
[258] | 1261 | } // end boot_mapping_init() |
---|
| 1262 | |
---|
| 1263 | |
---|
[557] | 1264 | /////////////////////////////////////////////////// |
---|
| 1265 | void boot_dma_copy( unsigned int cluster_xy, |
---|
| 1266 | unsigned long long dst_paddr, |
---|
| 1267 | unsigned long long src_paddr, |
---|
| 1268 | unsigned int size ) |
---|
| 1269 | { |
---|
| 1270 | // size must be multiple of 64 bytes |
---|
| 1271 | if ( size & 0x3F ) size = (size & (~0x3F)) + 0x40; |
---|
| 1272 | |
---|
| 1273 | unsigned int mode = MODE_DMA_NO_IRQ; |
---|
| 1274 | |
---|
| 1275 | unsigned int src = 0; |
---|
| 1276 | unsigned int src_lsb = (unsigned int)src_paddr; |
---|
| 1277 | unsigned int src_msb = (unsigned int)(src_paddr>>32); |
---|
| 1278 | |
---|
| 1279 | unsigned int dst = 1; |
---|
| 1280 | unsigned int dst_lsb = (unsigned int)dst_paddr; |
---|
| 1281 | unsigned int dst_msb = (unsigned int)(dst_paddr>>32); |
---|
| 1282 | |
---|
| 1283 | // initializes src channel |
---|
| 1284 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_MODE , mode ); |
---|
| 1285 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_SIZE , size ); |
---|
| 1286 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_LSB , src_lsb ); |
---|
| 1287 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_BUFFER_MSB , src_msb ); |
---|
| 1288 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING , 1 ); |
---|
| 1289 | |
---|
| 1290 | // initializes dst channel |
---|
| 1291 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_MODE , mode ); |
---|
| 1292 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_SIZE , size ); |
---|
| 1293 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_LSB , dst_lsb ); |
---|
| 1294 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_BUFFER_MSB , dst_msb ); |
---|
| 1295 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING , 1 ); |
---|
| 1296 | |
---|
| 1297 | // start CPY coprocessor (write non-zero value into config register) |
---|
| 1298 | _mwr_set_coproc_register( cluster_xy, 0 , 1 ); |
---|
| 1299 | |
---|
| 1300 | // poll dst channel status register to detect completion |
---|
| 1301 | unsigned int status; |
---|
| 1302 | do |
---|
| 1303 | { |
---|
| 1304 | status = _mwr_get_channel_register( cluster_xy , dst , MWR_CHANNEL_STATUS ); |
---|
| 1305 | } while ( status == MWR_CHANNEL_BUSY ); |
---|
| 1306 | |
---|
| 1307 | if ( status ) |
---|
| 1308 | { |
---|
| 1309 | _printf("\n[BOOT ERROR] in boot_dma_copy()\n"); |
---|
| 1310 | _exit(); |
---|
| 1311 | } |
---|
| 1312 | |
---|
| 1313 | // stop CPY coprocessor and DMA channels |
---|
| 1314 | _mwr_set_channel_register( cluster_xy , src , MWR_CHANNEL_RUNNING , 0 ); |
---|
| 1315 | _mwr_set_channel_register( cluster_xy , dst , MWR_CHANNEL_RUNNING , 0 ); |
---|
| 1316 | _mwr_set_coproc_register ( cluster_xy , 0 , 0 ); |
---|
| 1317 | |
---|
| 1318 | } // end boot_dma_copy() |
---|
| 1319 | |
---|
[527] | 1320 | ////////////////////////////////////////////////////////////////////////////////// |
---|
| 1321 | // This function load all loadable segments contained in the .elf file identified |
---|
[347] | 1322 | // by the "pathname" argument. Some loadable segments can be copied in several |
---|
| 1323 | // clusters: same virtual address but different physical addresses. |
---|
| 1324 | // - It open the file. |
---|
[527] | 1325 | // - It loads the complete file in the dedicated _boot_elf_buffer. |
---|
[359] | 1326 | // - It copies each loadable segments at the virtual address defined in |
---|
| 1327 | // the .elf file, making several copies if the target vseg is not local. |
---|
[347] | 1328 | // - It closes the file. |
---|
[527] | 1329 | // This function is supposed to be executed by all processors[x,y,0]. |
---|
| 1330 | // |
---|
| 1331 | // Note: We must use physical addresses to reach the destination buffers that |
---|
| 1332 | // can be located in remote clusters. We use either a _physical_memcpy(), |
---|
| 1333 | // or a _dma_physical_copy() if DMA is available. |
---|
| 1334 | ////////////////////////////////////////////////////////////////////////////////// |
---|
[347] | 1335 | void load_one_elf_file( unsigned int is_kernel, // kernel file if non zero |
---|
[258] | 1336 | char* pathname, |
---|
[347] | 1337 | unsigned int vspace_id ) // to scan the proper vspace |
---|
[258] | 1338 | { |
---|
[347] | 1339 | mapping_header_t * header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1340 | mapping_vspace_t * vspace = _get_vspace_base(header); |
---|
| 1341 | mapping_vseg_t * vseg = _get_vseg_base(header); |
---|
| 1342 | |
---|
[527] | 1343 | unsigned int procid = _get_procid(); |
---|
| 1344 | unsigned int cxy = procid >> P_WIDTH; |
---|
| 1345 | unsigned int x = cxy >> Y_WIDTH; |
---|
| 1346 | unsigned int y = cxy & ((1<<Y_WIDTH)-1); |
---|
| 1347 | unsigned int p = procid & ((1<<P_WIDTH)-1); |
---|
[258] | 1348 | |
---|
| 1349 | #if BOOT_DEBUG_ELF |
---|
[557] | 1350 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] enters for %s\n", |
---|
[527] | 1351 | x , y , p , pathname ); |
---|
[258] | 1352 | #endif |
---|
| 1353 | |
---|
[527] | 1354 | Elf32_Ehdr* elf_header_ptr = NULL; // avoid a warning |
---|
[258] | 1355 | |
---|
[590] | 1356 | // only P[0,0,0] load file |
---|
[527] | 1357 | if ( (cxy == 0) && (p == 0) ) |
---|
[258] | 1358 | { |
---|
[590] | 1359 | if ( _fat_load_no_cache( pathname, |
---|
| 1360 | (unsigned int)_boot_elf_buffer, |
---|
| 1361 | GIET_ELF_BUFFER_SIZE ) ) |
---|
[527] | 1362 | { |
---|
[590] | 1363 | _printf("\n[BOOT ERROR] in load_one_elf_file() : %s\n", pathname ); |
---|
[527] | 1364 | _exit(); |
---|
| 1365 | } |
---|
[258] | 1366 | |
---|
[527] | 1367 | // Check ELF Magic Number in ELF header |
---|
| 1368 | Elf32_Ehdr* ptr = (Elf32_Ehdr*)_boot_elf_buffer; |
---|
| 1369 | |
---|
| 1370 | if ( (ptr->e_ident[EI_MAG0] != ELFMAG0) || |
---|
| 1371 | (ptr->e_ident[EI_MAG1] != ELFMAG1) || |
---|
| 1372 | (ptr->e_ident[EI_MAG2] != ELFMAG2) || |
---|
| 1373 | (ptr->e_ident[EI_MAG3] != ELFMAG3) ) |
---|
| 1374 | { |
---|
[557] | 1375 | _printf("\n[BOOT ERROR] load_one_elf_file() : %s not ELF format\n", |
---|
[527] | 1376 | pathname ); |
---|
| 1377 | _exit(); |
---|
| 1378 | } |
---|
| 1379 | |
---|
| 1380 | #if BOOT_DEBUG_ELF |
---|
[557] | 1381 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] load %s at cycle %d\n", |
---|
| 1382 | x , y , p , pathname , _get_proctime() ); |
---|
[527] | 1383 | #endif |
---|
| 1384 | |
---|
| 1385 | } // end if P[0,0,0] |
---|
| 1386 | |
---|
| 1387 | ////////////////////////////////////////////// |
---|
| 1388 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1389 | ////////////////////////////////////////////// |
---|
| 1390 | |
---|
| 1391 | // Each processor P[x,y,0] copy replicated segments in cluster[x,y] |
---|
| 1392 | elf_header_ptr = (Elf32_Ehdr*)_boot_elf_buffer; |
---|
| 1393 | |
---|
[258] | 1394 | // get program header table pointer |
---|
[527] | 1395 | unsigned int offset = elf_header_ptr->e_phoff; |
---|
| 1396 | if( offset == 0 ) |
---|
[258] | 1397 | { |
---|
[493] | 1398 | _printf("\n[BOOT ERROR] load_one_elf_file() : file %s " |
---|
| 1399 | "does not contain loadable segment\n", pathname ); |
---|
[258] | 1400 | _exit(); |
---|
| 1401 | } |
---|
| 1402 | |
---|
[527] | 1403 | Elf32_Phdr* elf_pht_ptr = (Elf32_Phdr*)(_boot_elf_buffer + offset); |
---|
| 1404 | |
---|
[258] | 1405 | // get number of segments |
---|
| 1406 | unsigned int nsegments = elf_header_ptr->e_phnum; |
---|
| 1407 | |
---|
[527] | 1408 | // First loop on loadable segments in the .elf file |
---|
| 1409 | unsigned int seg_id; |
---|
[258] | 1410 | for (seg_id = 0 ; seg_id < nsegments ; seg_id++) |
---|
| 1411 | { |
---|
| 1412 | if(elf_pht_ptr[seg_id].p_type == PT_LOAD) |
---|
| 1413 | { |
---|
| 1414 | // Get segment attributes |
---|
| 1415 | unsigned int seg_vaddr = elf_pht_ptr[seg_id].p_vaddr; |
---|
| 1416 | unsigned int seg_offset = elf_pht_ptr[seg_id].p_offset; |
---|
| 1417 | unsigned int seg_filesz = elf_pht_ptr[seg_id].p_filesz; |
---|
| 1418 | unsigned int seg_memsz = elf_pht_ptr[seg_id].p_memsz; |
---|
| 1419 | |
---|
[527] | 1420 | if( seg_memsz != seg_filesz ) |
---|
[258] | 1421 | { |
---|
[527] | 1422 | _printf("\n[BOOT ERROR] load_one_elf_file() : segment at vaddr = %x\n" |
---|
| 1423 | " in file %s has memsize = %x / filesize = %x \n" |
---|
| 1424 | " check that all global variables are in data segment\n", |
---|
| 1425 | seg_vaddr, pathname , seg_memsz , seg_filesz ); |
---|
[709] | 1426 | _exit(); |
---|
[258] | 1427 | } |
---|
| 1428 | |
---|
[527] | 1429 | unsigned int src_vaddr = (unsigned int)_boot_elf_buffer + seg_offset; |
---|
[258] | 1430 | |
---|
[347] | 1431 | // search all vsegs matching the virtual address |
---|
| 1432 | unsigned int vseg_first; |
---|
| 1433 | unsigned int vseg_last; |
---|
| 1434 | unsigned int vseg_id; |
---|
| 1435 | unsigned int found = 0; |
---|
| 1436 | if ( is_kernel ) |
---|
| 1437 | { |
---|
| 1438 | vseg_first = 0; |
---|
| 1439 | vseg_last = header->globals; |
---|
| 1440 | } |
---|
| 1441 | else |
---|
| 1442 | { |
---|
| 1443 | vseg_first = vspace[vspace_id].vseg_offset; |
---|
| 1444 | vseg_last = vseg_first + vspace[vspace_id].vsegs; |
---|
| 1445 | } |
---|
| 1446 | |
---|
[527] | 1447 | // Second loop on vsegs in the mapping |
---|
[347] | 1448 | for ( vseg_id = vseg_first ; vseg_id < vseg_last ; vseg_id++ ) |
---|
| 1449 | { |
---|
| 1450 | if ( seg_vaddr == vseg[vseg_id].vbase ) // matching |
---|
| 1451 | { |
---|
| 1452 | found = 1; |
---|
| 1453 | |
---|
[527] | 1454 | // get destination buffer physical address, size, coordinates |
---|
[347] | 1455 | paddr_t seg_paddr = vseg[vseg_id].pbase; |
---|
[513] | 1456 | unsigned int seg_size = vseg[vseg_id].length; |
---|
[557] | 1457 | unsigned int cluster_xy = (unsigned int)(seg_paddr>>32); |
---|
| 1458 | unsigned int cx = cluster_xy >> Y_WIDTH; |
---|
| 1459 | unsigned int cy = cluster_xy & ((1<<Y_WIDTH)-1); |
---|
[527] | 1460 | |
---|
[347] | 1461 | // check vseg size |
---|
| 1462 | if ( seg_size < seg_filesz ) |
---|
| 1463 | { |
---|
[493] | 1464 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg %s " |
---|
[590] | 1465 | "is too small for segment %x\n" |
---|
| 1466 | " file = %s / vseg_size = %x / seg_file_size = %x\n", |
---|
| 1467 | vseg[vseg_id].name , seg_vaddr , pathname, |
---|
| 1468 | seg_size , seg_filesz ); |
---|
[347] | 1469 | _exit(); |
---|
| 1470 | } |
---|
[258] | 1471 | |
---|
[527] | 1472 | // P[x,y,0] copy the segment from boot buffer in cluster[0,0] |
---|
[557] | 1473 | // to destination buffer in cluster[x,y], using DMA if available |
---|
[527] | 1474 | if ( (cx == x) && (cy == y) ) |
---|
[347] | 1475 | { |
---|
[557] | 1476 | if( USE_MWR_CPY ) |
---|
[527] | 1477 | { |
---|
[557] | 1478 | boot_dma_copy( cluster_xy, // DMA in cluster[x,y] |
---|
| 1479 | seg_paddr, |
---|
| 1480 | (paddr_t)src_vaddr, |
---|
| 1481 | seg_filesz ); |
---|
| 1482 | #if BOOT_DEBUG_ELF |
---|
| 1483 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : DMA[%d,%d] copy segment %d :\n" |
---|
| 1484 | " vaddr = %x / size = %x / paddr = %l\n", |
---|
| 1485 | x , y , seg_id , seg_vaddr , seg_memsz , seg_paddr ); |
---|
| 1486 | #endif |
---|
[527] | 1487 | } |
---|
| 1488 | else |
---|
| 1489 | { |
---|
| 1490 | _physical_memcpy( seg_paddr, // dest paddr |
---|
| 1491 | (paddr_t)src_vaddr, // source paddr |
---|
| 1492 | seg_filesz ); // size |
---|
| 1493 | #if BOOT_DEBUG_ELF |
---|
[557] | 1494 | _printf("\n[DEBUG BOOT_ELF] load_one_elf_file() : P[%d,%d,%d] copy segment %d :\n" |
---|
[527] | 1495 | " vaddr = %x / size = %x / paddr = %l\n", |
---|
| 1496 | x , y , p , seg_id , seg_vaddr , seg_memsz , seg_paddr ); |
---|
| 1497 | #endif |
---|
[557] | 1498 | } |
---|
[347] | 1499 | } |
---|
| 1500 | } |
---|
[527] | 1501 | } // end for vsegs |
---|
[347] | 1502 | |
---|
| 1503 | // check at least one matching vseg |
---|
| 1504 | if ( found == 0 ) |
---|
[258] | 1505 | { |
---|
[493] | 1506 | _printf("\n[BOOT ERROR] in load_one_elf_file() : vseg for loadable " |
---|
| 1507 | "segment %x in file %s not found " |
---|
| 1508 | "check consistency between the .py and .ld files\n", |
---|
| 1509 | seg_vaddr, pathname ); |
---|
[347] | 1510 | _exit(); |
---|
[258] | 1511 | } |
---|
| 1512 | } |
---|
[347] | 1513 | } // end for loadable segments |
---|
[258] | 1514 | |
---|
[527] | 1515 | ////////////////////////////////////////////// |
---|
| 1516 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1517 | ////////////////////////////////////////////// |
---|
[258] | 1518 | |
---|
[590] | 1519 | // only P[0,0,0] signals completion |
---|
[527] | 1520 | if ( (cxy == 0) && (p == 0) ) |
---|
| 1521 | { |
---|
| 1522 | _printf("\n[BOOT] File %s loaded at cycle %d\n", |
---|
| 1523 | pathname , _get_proctime() ); |
---|
| 1524 | } |
---|
| 1525 | |
---|
[258] | 1526 | } // end load_one_elf_file() |
---|
| 1527 | |
---|
| 1528 | |
---|
[347] | 1529 | /////i//////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 1530 | // This function uses the map.bin data structure to load the "kernel.elf" file |
---|
[347] | 1531 | // as well as the various "application.elf" files into memory. |
---|
| 1532 | // - The "preloader.elf" file is not loaded, because it has been burned in the ROM. |
---|
| 1533 | // - The "boot.elf" file is not loaded, because it has been loaded by the preloader. |
---|
[513] | 1534 | // This function scans all vsegs defined in the map.bin data structure to collect |
---|
[347] | 1535 | // all .elf files pathnames, and calls the load_one_elf_file() for each .elf file. |
---|
| 1536 | // As the code can be replicated in several vsegs, the same code can be copied |
---|
| 1537 | // in one or several clusters by the load_one_elf_file() function. |
---|
| 1538 | ////////////////////////////////////////////////////////////////////////////////////// |
---|
[258] | 1539 | void boot_elf_load() |
---|
| 1540 | { |
---|
[321] | 1541 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
[258] | 1542 | mapping_vspace_t* vspace = _get_vspace_base( header ); |
---|
[513] | 1543 | mapping_vseg_t* vseg = _get_vseg_base( header ); |
---|
| 1544 | |
---|
[258] | 1545 | unsigned int vspace_id; |
---|
[513] | 1546 | unsigned int vseg_id; |
---|
[258] | 1547 | unsigned int found; |
---|
| 1548 | |
---|
[513] | 1549 | // Scan all global vsegs to find the pathname to the kernel.elf file |
---|
[258] | 1550 | found = 0; |
---|
[513] | 1551 | for( vseg_id = 0 ; vseg_id < header->globals ; vseg_id++ ) |
---|
[258] | 1552 | { |
---|
[513] | 1553 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
[258] | 1554 | { |
---|
| 1555 | found = 1; |
---|
| 1556 | break; |
---|
| 1557 | } |
---|
| 1558 | } |
---|
| 1559 | |
---|
| 1560 | // We need one kernel.elf file |
---|
| 1561 | if (found == 0) |
---|
| 1562 | { |
---|
[493] | 1563 | _printf("\n[BOOT ERROR] boot_elf_load() : kernel.elf file not found\n"); |
---|
[258] | 1564 | _exit(); |
---|
| 1565 | } |
---|
| 1566 | |
---|
[347] | 1567 | // Load the kernel |
---|
| 1568 | load_one_elf_file( 1, // kernel file |
---|
[513] | 1569 | vseg[vseg_id].binpath, // file pathname |
---|
[258] | 1570 | 0 ); // vspace 0 |
---|
| 1571 | |
---|
[513] | 1572 | // loop on the vspaces, scanning all vsegs in the vspace, |
---|
[258] | 1573 | // to find the pathname of the .elf file associated to the vspace. |
---|
| 1574 | for( vspace_id = 0 ; vspace_id < header->vspaces ; vspace_id++ ) |
---|
| 1575 | { |
---|
[513] | 1576 | // loop on the private vsegs |
---|
[258] | 1577 | unsigned int found = 0; |
---|
[513] | 1578 | for (vseg_id = vspace[vspace_id].vseg_offset; |
---|
| 1579 | vseg_id < (vspace[vspace_id].vseg_offset + vspace[vspace_id].vsegs); |
---|
| 1580 | vseg_id++) |
---|
[258] | 1581 | { |
---|
[513] | 1582 | if(vseg[vseg_id].type == VSEG_TYPE_ELF) |
---|
[258] | 1583 | { |
---|
| 1584 | found = 1; |
---|
| 1585 | break; |
---|
| 1586 | } |
---|
| 1587 | } |
---|
| 1588 | |
---|
| 1589 | // We want one .elf file per vspace |
---|
| 1590 | if (found == 0) |
---|
| 1591 | { |
---|
[493] | 1592 | _printf("\n[BOOT ERROR] boot_elf_load() : " |
---|
| 1593 | ".elf file not found for vspace %s\n", vspace[vspace_id].name ); |
---|
[258] | 1594 | _exit(); |
---|
| 1595 | } |
---|
| 1596 | |
---|
[347] | 1597 | load_one_elf_file( 0, // not a kernel file |
---|
[513] | 1598 | vseg[vseg_id].binpath, // file pathname |
---|
[347] | 1599 | vspace_id ); // vspace index |
---|
[258] | 1600 | |
---|
| 1601 | } // end for vspaces |
---|
| 1602 | |
---|
| 1603 | } // end boot_elf_load() |
---|
| 1604 | |
---|
| 1605 | |
---|
[527] | 1606 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 1607 | // This function is executed in parallel by all processors[x][y][0]. |
---|
[527] | 1608 | // It initialises the physical memory allocator in each cluster containing |
---|
| 1609 | // a RAM pseg. |
---|
| 1610 | ///////////////////////////////////////////////////////////////////////////////// |
---|
[493] | 1611 | void boot_pmem_init( unsigned int cx, |
---|
| 1612 | unsigned int cy ) |
---|
[412] | 1613 | { |
---|
| 1614 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1615 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 1616 | mapping_pseg_t* pseg = _get_pseg_base(header); |
---|
| 1617 | |
---|
| 1618 | unsigned int pseg_id; |
---|
[490] | 1619 | unsigned int procid = _get_procid(); |
---|
| 1620 | unsigned int lpid = procid & ((1<<P_WIDTH)-1); |
---|
[493] | 1621 | |
---|
| 1622 | if( lpid ) |
---|
[490] | 1623 | { |
---|
[493] | 1624 | _printf("\n[BOOT ERROR] boot_pmem_init() : " |
---|
| 1625 | "P[%d][%d][%d] should not execute it\n", cx, cy, lpid ); |
---|
[490] | 1626 | _exit(); |
---|
[493] | 1627 | } |
---|
[412] | 1628 | |
---|
[493] | 1629 | // scan the psegs in local cluster to find pseg of type RAM |
---|
| 1630 | unsigned int found = 0; |
---|
| 1631 | unsigned int cluster_id = cx * Y_SIZE + cy; |
---|
| 1632 | unsigned int pseg_min = cluster[cluster_id].pseg_offset; |
---|
| 1633 | unsigned int pseg_max = pseg_min + cluster[cluster_id].psegs; |
---|
[757] | 1634 | |
---|
[490] | 1635 | for ( pseg_id = pseg_min ; pseg_id < pseg_max ; pseg_id++ ) |
---|
[412] | 1636 | { |
---|
[490] | 1637 | if ( pseg[pseg_id].type == PSEG_TYPE_RAM ) |
---|
[412] | 1638 | { |
---|
[490] | 1639 | unsigned int base = (unsigned int)pseg[pseg_id].base; |
---|
| 1640 | unsigned int size = (unsigned int)pseg[pseg_id].length; |
---|
[493] | 1641 | _pmem_alloc_init( cx, cy, base, size ); |
---|
| 1642 | found = 1; |
---|
[412] | 1643 | |
---|
| 1644 | #if BOOT_DEBUG_PT |
---|
[493] | 1645 | _printf("\n[BOOT] pmem allocator initialised in cluster[%d][%d]" |
---|
| 1646 | " : base = %x / size = %x\n", cx , cy , base , size ); |
---|
[412] | 1647 | #endif |
---|
[490] | 1648 | break; |
---|
[412] | 1649 | } |
---|
| 1650 | } |
---|
[493] | 1651 | |
---|
| 1652 | if ( found == 0 ) |
---|
| 1653 | { |
---|
| 1654 | _printf("\n[BOOT ERROR] boot_pmem_init() : no RAM in cluster[%d][%d]\n", |
---|
[527] | 1655 | cx , cy ); |
---|
[493] | 1656 | _exit(); |
---|
| 1657 | } |
---|
[412] | 1658 | } // end boot_pmem_init() |
---|
| 1659 | |
---|
| 1660 | ///////////////////////////////////////////////////////////////////////// |
---|
[258] | 1661 | // This function is the entry point of the boot code for all processors. |
---|
| 1662 | ///////////////////////////////////////////////////////////////////////// |
---|
[347] | 1663 | void boot_init() |
---|
[258] | 1664 | { |
---|
[493] | 1665 | |
---|
[295] | 1666 | unsigned int gpid = _get_procid(); |
---|
[493] | 1667 | unsigned int cx = gpid >> (Y_WIDTH + P_WIDTH); |
---|
| 1668 | unsigned int cy = (gpid >> P_WIDTH) & ((1<<Y_WIDTH)-1); |
---|
| 1669 | unsigned int lpid = gpid & ((1 << P_WIDTH) -1); |
---|
[490] | 1670 | |
---|
[527] | 1671 | ////////////////////////////////////////////////////////// |
---|
[493] | 1672 | // Phase ONE : only P[0][0][0] execute it |
---|
[527] | 1673 | ////////////////////////////////////////////////////////// |
---|
[493] | 1674 | if ( gpid == 0 ) |
---|
[258] | 1675 | { |
---|
[552] | 1676 | unsigned int cid; // index for loop on clusters |
---|
[258] | 1677 | |
---|
[493] | 1678 | // initialises the TTY0 spin lock |
---|
| 1679 | _spin_lock_init( &_tty0_spin_lock ); |
---|
| 1680 | |
---|
| 1681 | _printf("\n[BOOT] P[0,0,0] starts at cycle %d\n", _get_proctime() ); |
---|
| 1682 | |
---|
[631] | 1683 | // initialise the MMC locks array |
---|
| 1684 | _mmc_boot_mode = 1; |
---|
| 1685 | _mmc_init_locks(); |
---|
| 1686 | |
---|
[552] | 1687 | // initialises the IOC peripheral |
---|
| 1688 | if ( USE_IOC_BDV != 0 ) _bdv_init(); |
---|
| 1689 | else if ( USE_IOC_HBA != 0 ) _hba_init(); |
---|
| 1690 | else if ( USE_IOC_SDC != 0 ) _sdc_init(); |
---|
| 1691 | else if ( USE_IOC_RDK == 0 ) |
---|
| 1692 | { |
---|
| 1693 | _printf("\n[BOOT ERROR] boot_init() : no IOC peripheral\n"); |
---|
| 1694 | _exit(); |
---|
| 1695 | } |
---|
| 1696 | |
---|
[460] | 1697 | // initialises the FAT |
---|
[590] | 1698 | _fat_init( 0 ); // don't use Inode-Tree, Fat-Cache, etc. |
---|
[460] | 1699 | |
---|
[493] | 1700 | _printf("\n[BOOT] FAT initialised at cycle %d\n", _get_proctime() ); |
---|
| 1701 | |
---|
| 1702 | // Load the map.bin file into memory |
---|
[258] | 1703 | boot_mapping_init(); |
---|
| 1704 | |
---|
[524] | 1705 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1706 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 1707 | |
---|
[757] | 1708 | _printf("\n[BOOT] Mapping %s at cycle %d\n", |
---|
[493] | 1709 | header->name , _get_proctime() ); |
---|
[258] | 1710 | |
---|
[493] | 1711 | // initialises the barrier for all clusters containing processors |
---|
| 1712 | unsigned int nclusters = 0; |
---|
| 1713 | for ( cid = 0 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
| 1714 | { |
---|
| 1715 | if ( cluster[cid].procs ) nclusters++ ; |
---|
| 1716 | } |
---|
[490] | 1717 | |
---|
[493] | 1718 | _simple_barrier_init( &_barrier_all_clusters , nclusters ); |
---|
| 1719 | |
---|
| 1720 | // wake up all processors P[x][y][0] |
---|
| 1721 | for ( cid = 1 ; cid < X_SIZE*Y_SIZE ; cid++ ) |
---|
[490] | 1722 | { |
---|
[493] | 1723 | unsigned int x = cluster[cid].x; |
---|
| 1724 | unsigned int y = cluster[cid].y; |
---|
| 1725 | unsigned int cluster_xy = (x << Y_WIDTH) + y; |
---|
[490] | 1726 | |
---|
[493] | 1727 | if ( cluster[cid].procs ) |
---|
| 1728 | { |
---|
| 1729 | unsigned long long paddr = (((unsigned long long)cluster_xy)<<32) + |
---|
[527] | 1730 | SEG_XCU_BASE+XCU_REG( XCU_WTI_REG , 0 ); |
---|
[493] | 1731 | |
---|
| 1732 | _physical_write( paddr , (unsigned int)boot_entry ); |
---|
| 1733 | } |
---|
[490] | 1734 | } |
---|
[412] | 1735 | |
---|
[527] | 1736 | _printf("\n[BOOT] Processors P[x,y,0] start at cycle %d\n", |
---|
| 1737 | _get_proctime() ); |
---|
[490] | 1738 | } |
---|
[412] | 1739 | |
---|
[527] | 1740 | ///////////////////////////////////////////////////////////////// |
---|
[493] | 1741 | // Phase TWO : All processors P[x][y][0] execute it in parallel |
---|
[527] | 1742 | ///////////////////////////////////////////////////////////////// |
---|
[493] | 1743 | if( lpid == 0 ) |
---|
[490] | 1744 | { |
---|
[493] | 1745 | // Initializes physical memory allocator in cluster[cx][cy] |
---|
| 1746 | boot_pmem_init( cx , cy ); |
---|
[412] | 1747 | |
---|
[493] | 1748 | // Build page table in cluster[cx][cy] |
---|
| 1749 | boot_ptab_init( cx , cy ); |
---|
[258] | 1750 | |
---|
[493] | 1751 | ////////////////////////////////////////////// |
---|
| 1752 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1753 | ////////////////////////////////////////////// |
---|
[258] | 1754 | |
---|
[493] | 1755 | // P[0][0][0] complete page tables with vsegs |
---|
| 1756 | // mapped in clusters without processors |
---|
| 1757 | if ( gpid == 0 ) |
---|
| 1758 | { |
---|
| 1759 | // complete page tables initialisation |
---|
| 1760 | boot_ptab_extend(); |
---|
[258] | 1761 | |
---|
[732] | 1762 | _printf("\n[BOOT] Page tables" |
---|
[493] | 1763 | " initialized at cycle %d\n", _get_proctime() ); |
---|
| 1764 | } |
---|
[258] | 1765 | |
---|
[493] | 1766 | ////////////////////////////////////////////// |
---|
| 1767 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1768 | ////////////////////////////////////////////// |
---|
| 1769 | |
---|
| 1770 | // All processors P[x,y,0] activate MMU (using local PTAB) |
---|
| 1771 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
| 1772 | _set_mmu_mode( 0xF ); |
---|
[258] | 1773 | |
---|
[493] | 1774 | // Each processor P[x,y,0] initialises all schedulers in cluster[x,y] |
---|
| 1775 | boot_scheduler_init( cx , cy ); |
---|
[258] | 1776 | |
---|
[493] | 1777 | // Each processor P[x][y][0] initialises its CP0_SCHED register |
---|
| 1778 | _set_sched( (unsigned int)_schedulers[cx][cy][0] ); |
---|
[258] | 1779 | |
---|
[493] | 1780 | ////////////////////////////////////////////// |
---|
| 1781 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1782 | ////////////////////////////////////////////// |
---|
[527] | 1783 | |
---|
[493] | 1784 | if ( gpid == 0 ) |
---|
| 1785 | { |
---|
[527] | 1786 | _printf("\n[BOOT] Schedulers initialised at cycle %d\n", |
---|
| 1787 | _get_proctime() ); |
---|
| 1788 | } |
---|
[258] | 1789 | |
---|
[552] | 1790 | // All processor P[x,y,0] contributes to load .elf files into clusters. |
---|
[527] | 1791 | boot_elf_load(); |
---|
[258] | 1792 | |
---|
[527] | 1793 | ////////////////////////////////////////////// |
---|
| 1794 | _simple_barrier_wait( &_barrier_all_clusters ); |
---|
| 1795 | ////////////////////////////////////////////// |
---|
| 1796 | |
---|
[552] | 1797 | // Each processor P[x][y][0] wake up other processors in same cluster |
---|
[524] | 1798 | mapping_header_t* header = (mapping_header_t *)SEG_BOOT_MAPPING_BASE; |
---|
| 1799 | mapping_cluster_t* cluster = _get_cluster_base(header); |
---|
| 1800 | unsigned int cluster_xy = (cx << Y_WIDTH) + cy; |
---|
| 1801 | unsigned int cluster_id = (cx * Y_SIZE) + cy; |
---|
[493] | 1802 | unsigned int p; |
---|
| 1803 | for ( p = 1 ; p < cluster[cluster_id].procs ; p++ ) |
---|
| 1804 | { |
---|
| 1805 | _xcu_send_wti( cluster_xy , p , (unsigned int)boot_entry ); |
---|
| 1806 | } |
---|
[258] | 1807 | |
---|
[527] | 1808 | // only P[0][0][0] makes display |
---|
| 1809 | if ( gpid == 0 ) |
---|
| 1810 | { |
---|
| 1811 | _printf("\n[BOOT] All processors start at cycle %d\n", |
---|
| 1812 | _get_proctime() ); |
---|
| 1813 | } |
---|
[493] | 1814 | } |
---|
[552] | 1815 | // All other processors activate MMU (using local PTAB) |
---|
[493] | 1816 | if ( lpid != 0 ) |
---|
[258] | 1817 | { |
---|
[493] | 1818 | _set_mmu_ptpr( (unsigned int)(_ptabs_paddr[0][cx][cy]>>13) ); |
---|
[258] | 1819 | _set_mmu_mode( 0xF ); |
---|
| 1820 | } |
---|
| 1821 | |
---|
[493] | 1822 | // All processors set CP0_SCHED register |
---|
| 1823 | _set_sched( (unsigned int)_schedulers[cx][cy][lpid] ); |
---|
| 1824 | |
---|
| 1825 | // All processors reset BEV bit in SR to use GIET_VM exception handler |
---|
[427] | 1826 | _set_sr( 0 ); |
---|
| 1827 | |
---|
[646] | 1828 | // Each processor get kernel entry virtual address |
---|
[742] | 1829 | unsigned int kernel_entry = 0x80000000; |
---|
[527] | 1830 | |
---|
| 1831 | #if BOOT_DEBUG_ELF |
---|
[552] | 1832 | _printf("\n[DEBUG BOOT_ELF] P[%d,%d,%d] exit boot & jump to %x at cycle %d\n", |
---|
[527] | 1833 | cx, cy, lpid, kernel_entry , _get_proctime() ); |
---|
| 1834 | #endif |
---|
| 1835 | |
---|
[493] | 1836 | // All processors jump to kernel_init |
---|
[258] | 1837 | asm volatile( "jr %0" ::"r"(kernel_entry) ); |
---|
| 1838 | |
---|
| 1839 | } // end boot_init() |
---|
| 1840 | |
---|
| 1841 | |
---|
| 1842 | // Local Variables: |
---|
| 1843 | // tab-width: 4 |
---|
| 1844 | // c-basic-offset: 4 |
---|
| 1845 | // c-file-offsets:((innamespace . 0)(inline-open . 0)) |
---|
| 1846 | // indent-tabs-mode: nil |
---|
| 1847 | // End: |
---|
| 1848 | // vim: filetype=c:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 |
---|
| 1849 | |
---|