Quentin L. Meunier
Associate Professor in Computer Science at Sorbonne Université
Random Thoughts
This section contains some thoughts, more or less structured...
Real Periodicity
When I was young, there was in my home a pendulum clock near a regular clock. Both made a periodic sound, but their periods were different. From time to time, it appeared that both sounds happened exactly at the same time, but I always thought: "Can both sounds happen even more at the same time?". Quickly enough, I came to the following conclusion:
If a and b (a < b) are two real numbers, there exists a subsequence of the sequence S (defined below) which converges towards 0.
The sequence S is defined by: S(n) = Mink ∈ ℕ | n × b − a × k |
Informally, we can represent this problem with two axes on which happen two periodic events A and B, with respective periods a and b. The terms in the sequences are the differences between the moment where the n-th event B happens and the closest A event (see figure below).
There are two situations:
Either the numbers a and b verify the following property: there exists m, m' ∈ ℕ sch that a × m = b × m'
In this case, all the terms S((i) of the sequence such that i mod m' = 0 are equal to 0 (null subsequence)
Either the numbers a and b do not verify this property (let's say that they are "relatively prime numbers" by enlarging the concept to real numbers), in which case the value ok k minimizing the expression S(n) is:
Either k = ⌈ n × b / a ⌉
Or k = ⌊ n × b / a ⌋
We can besides note that when two numbers belong to ℚ, they are not relatively prime: if a = p / q and b = u / v, then the terms of the sequence will be null for the indexes multiple of p × v. Conversely, if one of the two numbers does not belong to ℚ, then a and b are relatively prime. Consequently, if two real numbers are obtained via a random variable with a support of non-null measure, then the probability that they are "relatively prime" is 1. In the cases of the clocks, there were thus high chances that it was the case (modulo the non atomicity of events).
Number of divisors
Let F be the function which associates to a number, the number of divisors of this number. Let H be the ordered sequence of natural numbers verifying: n ∈ H ⇔ ∀ x ∈ ℕ x < n ⇒ F(x) < F(n)
In other words, for a number n in H, there exists no smaller number with a number of divisors higher or equal to the one of n.
As such, it is an efficient frontier, represented for the first values in the figure below.
Elements of the sequence H (abscissa) and their number of divisors (ordinate)
We can observe the regularity of these elements on a logarithmic scale (x and y) :
Elements of the sequence H (abscissa) and their number of divisors (ordinate) with logarithmic scales
Asymptotically, if we consider that the kth prime number is given by k × ln(k), one must choose the coefficients ak in order to:
Minimize ∏k(k ln(k))ak
Maximize the function ∏k(ak + 1)
What interests me here is the distribution of the powers on the prime factors. Intuitively, I feel that the terms of the product to maximize should be the most equal as possible, and thus that the ak be of the form α ⁄ ln(k ln(k)), but this is not really more than an intuition (any help is welcome).
For example, if we take for the ak a linear decrease, making the terms U(n) = p(0)k×p(1)k-1× ... ×p(n)1, we realize quickly enough that one of the terms of U is not on the efficient frontier.
The prime factors powers values are given below for the first terms of H:
Number
Number of divisors
Powers of the prime factors
4
3
2
6
4
1 1
12
6
2 1
24
8
3 1
36
9
2 2
48
10
4 1
60
12
2 1 1
120
16
3 1 1
180
18
2 2 1
240
20
4 1 1
360
24
3 2 1
720
30
4 2 1
840
32
3 1 1 1
1260
36
2 2 1 1
1680
40
4 1 1 1
2520
48
3 2 1 1
5040
60
4 2 1 1
7560
64
3 3 1 1
10080
72
5 2 1 1
15120
80
4 3 1 1
20160
84
6 2 1 1
25200
90
4 2 2 1
27720
96
3 2 1 1 1
45360
100
4 4 1 1
50400
108
5 2 2 1
55440
120
4 2 1 1 1
83160
128
3 3 1 1 1
110880
144
5 2 1 1 1
166320
160
4 3 1 1 1
221760
168
6 2 1 1 1
277200
180
4 2 2 1 1
332640
192
5 3 1 1 1
498960
200
4 4 1 1 1
554400
216
5 2 2 1 1
665280
224
6 3 1 1 1
720720
240
4 2 1 1 1 1
1081080
256
3 3 1 1 1 1
1441440
288
5 2 1 1 1 1
2162160
320
4 3 1 1 1 1
2882880
336
6 2 1 1 1 1
3603600
360
4 2 2 1 1 1
4324320
384
5 3 1 1 1 1
6486480
400
4 4 1 1 1 1
7207200
432
5 2 2 1 1 1
8648640
448
6 3 1 1 1 1
10810800
480
4 3 2 1 1 1
14414400
504
6 2 2 1 1 1
17297280
512
7 3 1 1 1 1
21621600
576
5 3 2 1 1 1
32432400
600
4 4 2 1 1 1
36756720
640
4 3 1 1 1 1 1
43243200
672
6 3 2 1 1 1
61261200
720
4 2 2 1 1 1 1
73513440
768
5 3 1 1 1 1 1
110270160
800
4 4 1 1 1 1 1
122522400
864
5 2 2 1 1 1 1
147026880
896
6 3 1 1 1 1 1
183783600
960
4 3 2 1 1 1 1
245044800
1008
6 2 2 1 1 1 1
294053760
1024
7 3 1 1 1 1 1
367567200
1152
5 3 2 1 1 1 1
551350800
1200
4 4 2 1 1 1 1
698377680
1280
4 3 1 1 1 1 1 1
735134400
1344
6 3 2 1 1 1 1
1102701600
1440
5 4 2 1 1 1 1
1396755360
1536
5 3 1 1 1 1 1 1
2095133040
1600
4 4 1 1 1 1 1 1
2205403200
1680
6 4 2 1 1 1 1
2327925600
1728
5 2 2 1 1 1 1 1
2793510720
1792
6 3 1 1 1 1 1 1
3491888400
1920
4 3 2 1 1 1 1 1
4655851200
2016
6 2 2 1 1 1 1 1
5587021440
2048
7 3 1 1 1 1 1 1
6983776800
2304
5 3 2 1 1 1 1 1
10475665200
2400
4 4 2 1 1 1 1 1
13967553600
2688
6 3 2 1 1 1 1 1
20951330400
2880
5 4 2 1 1 1 1 1
27935107200
3072
7 3 2 1 1 1 1 1
41902660800
3360
6 4 2 1 1 1 1 1
48886437600
3456
5 3 2 2 1 1 1 1
64250746560
3584
6 3 1 1 1 1 1 1 1
73329656400
3600
4 4 2 2 1 1 1 1
80313433200
3840
4 3 2 1 1 1 1 1 1
97772875200
4032
6 3 2 2 1 1 1 1
128501493120
4096
7 3 1 1 1 1 1 1 1
146659312800
4320
5 4 2 2 1 1 1 1
160626866400
4608
5 3 2 1 1 1 1 1 1
240940299600
4800
4 4 2 1 1 1 1 1 1
293318625600
5040
6 4 2 2 1 1 1 1
321253732800
5376
6 3 2 1 1 1 1 1 1
481880599200
5760
5 4 2 1 1 1 1 1 1
642507465600
6144
7 3 2 1 1 1 1 1 1
963761198400
6720
6 4 2 1 1 1 1 1 1
1124388064800
6912
5 3 2 2 1 1 1 1 1
1606268664000
7168
6 3 3 1 1 1 1 1 1
1686582097200
7200
4 4 2 2 1 1 1 1 1
1927522396800
7680
7 4 2 1 1 1 1 1 1
2248776129600
8064
6 3 2 2 1 1 1 1 1
3212537328000
8192
7 3 3 1 1 1 1 1 1
3373164194400
8640
5 4 2 2 1 1 1 1 1
4497552259200
9216
7 3 2 2 1 1 1 1 1
6746328388800
10080
6 4 2 2 1 1 1 1 1
8995104518400
10368
8 3 2 2 1 1 1 1 1
9316358251200
10752
6 3 2 1 1 1 1 1 1 1
13492656777600
11520
7 4 2 2 1 1 1 1 1
18632716502400
12288
7 3 2 1 1 1 1 1 1 1
26985313555200
12960
8 4 2 2 1 1 1 1 1
27949074753600
13440
6 4 2 1 1 1 1 1 1 1
32607253879200
13824
5 3 2 2 1 1 1 1 1 1
46581791256000
14336
6 3 3 1 1 1 1 1 1 1
48910880818800
14400
4 4 2 2 1 1 1 1 1 1
55898149507200
15360
7 4 2 1 1 1 1 1 1 1
65214507758400
16128
6 3 2 2 1 1 1 1 1 1
93163582512000
16384
7 3 3 1 1 1 1 1 1 1
97821761637600
17280
5 4 2 2 1 1 1 1 1 1
130429015516800
18432
7 3 2 2 1 1 1 1 1 1
195643523275200
20160
6 4 2 2 1 1 1 1 1 1
260858031033600
20736
8 3 2 2 1 1 1 1 1 1
288807105787200
21504
6 3 2 1 1 1 1 1 1 1 1
391287046550400
23040
7 4 2 2 1 1 1 1 1 1
577614211574400
24576
7 3 2 1 1 1 1 1 1 1 1
782574093100800
25920
8 4 2 2 1 1 1 1 1 1
866421317361600
26880
6 4 2 1 1 1 1 1 1 1 1
1010824870255200
27648
5 3 2 2 1 1 1 1 1 1 1
1444035528936000
28672
6 3 3 1 1 1 1 1 1 1 1
1516237305382800
28800
4 4 2 2 1 1 1 1 1 1 1
1732842634723200
30720
7 4 2 1 1 1 1 1 1 1 1
2021649740510400
32256
6 3 2 2 1 1 1 1 1 1 1
2888071057872000
32768
7 3 3 1 1 1 1 1 1 1 1
3032474610765600
34560
5 4 2 2 1 1 1 1 1 1 1
4043299481020800
36864
7 3 2 2 1 1 1 1 1 1 1
6064949221531200
40320
6 4 2 2 1 1 1 1 1 1 1
8086598962041600
41472
8 3 2 2 1 1 1 1 1 1 1
10108248702552000
43008
6 3 3 2 1 1 1 1 1 1 1
12129898443062400
46080
7 4 2 2 1 1 1 1 1 1 1
18194847664593600
48384
6 5 2 2 1 1 1 1 1 1 1
20216497405104000
49152
7 3 3 2 1 1 1 1 1 1 1
24259796886124800
51840
8 4 2 2 1 1 1 1 1 1 1
30324746107656000
53760
6 4 3 2 1 1 1 1 1 1 1
36389695329187200
55296
7 5 2 2 1 1 1 1 1 1 1
48519593772249600
57600
9 4 2 2 1 1 1 1 1 1 1
60649492215312000
61440
7 4 3 2 1 1 1 1 1 1 1
72779390658374400
62208
8 5 2 2 1 1 1 1 1 1 1
74801040398884800
64512
6 3 2 2 1 1 1 1 1 1 1 1
106858629141264000
65536
7 3 3 1 1 1 1 1 1 1 1 1
112201560598327200
69120
5 4 2 2 1 1 1 1 1 1 1 1
149602080797769600
73728
7 3 2 2 1 1 1 1 1 1 1 1
224403121196654400
80640
6 4 2 2 1 1 1 1 1 1 1 1
299204161595539200
82944
8 3 2 2 1 1 1 1 1 1 1 1
374005201994424000
86016
6 3 3 2 1 1 1 1 1 1 1 1
448806242393308800
92160
7 4 2 2 1 1 1 1 1 1 1 1
673209363589963200
96768
6 5 2 2 1 1 1 1 1 1 1 1
748010403988848000
98304
7 3 3 2 1 1 1 1 1 1 1 1
897612484786617600
103680
8 4 2 2 1 1 1 1 1 1 1 1
1122015605983272000
107520
6 4 3 2 1 1 1 1 1 1 1 1
1346418727179926400
110592
7 5 2 2 1 1 1 1 1 1 1 1
1795224969573235200
115200
9 4 2 2 1 1 1 1 1 1 1 1
2244031211966544000
122880
7 4 3 2 1 1 1 1 1 1 1 1
2692837454359852800
124416
8 5 2 2 1 1 1 1 1 1 1 1
3066842656354276800
129024
6 3 2 2 1 1 1 1 1 1 1 1 1
4381203794791824000
131072
7 3 3 1 1 1 1 1 1 1 1 1 1
4488062423933088000
138240
8 4 3 2 1 1 1 1 1 1 1 1
6133685312708553600
147456
7 3 2 2 1 1 1 1 1 1 1 1 1
8976124847866176000
153600
9 4 3 2 1 1 1 1 1 1 1 1
9200527969062830400
161280
6 4 2 2 1 1 1 1 1 1 1 1 1
12267370625417107200
165888
8 3 2 2 1 1 1 1 1 1 1 1 1
15334213281771384000
172032
6 3 3 2 1 1 1 1 1 1 1 1 1
18401055938125660800
184320
7 4 2 2 1 1 1 1 1 1 1 1 1
27601583907188491200
193536
6 5 2 2 1 1 1 1 1 1 1 1 1
30668426563542768000
196608
7 3 3 2 1 1 1 1 1 1 1 1 1
36802111876251321600
207360
8 4 2 2 1 1 1 1 1 1 1 1 1
46002639845314152000
215040
6 4 3 2 1 1 1 1 1 1 1 1 1
55203167814376982400
221184
7 5 2 2 1 1 1 1 1 1 1 1 1
73604223752502643200
230400
9 4 2 2 1 1 1 1 1 1 1 1 1
92005279690628304000
245760
7 4 3 2 1 1 1 1 1 1 1 1 1
110406335628753964800
248832
8 5 2 2 1 1 1 1 1 1 1 1 1
131874234223233902400
258048
6 3 2 2 1 1 1 1 1 1 1 1 1 1
184010559381256608000
276480
8 4 3 2 1 1 1 1 1 1 1 1 1
263748468446467804800
294912
7 3 2 2 1 1 1 1 1 1 1 1 1 1
368021118762513216000
307200
9 4 3 2 1 1 1 1 1 1 1 1 1
395622702669701707200
322560
6 4 2 2 1 1 1 1 1 1 1 1 1 1
527496936892935609600
331776
8 3 2 2 1 1 1 1 1 1 1 1 1 1
659371171116169512000
344064
6 3 3 2 1 1 1 1 1 1 1 1 1 1
791245405339403414400
368640
7 4 2 2 1 1 1 1 1 1 1 1 1 1
1186868108009105121600
387072
6 5 2 2 1 1 1 1 1 1 1 1 1 1
1318742342232339024000
393216
7 3 3 2 1 1 1 1 1 1 1 1 1 1
1582490810678806828800
414720
8 4 2 2 1 1 1 1 1 1 1 1 1 1
1978113513348508536000
430080
6 4 3 2 1 1 1 1 1 1 1 1 1 1
2373736216018210243200
442368
7 5 2 2 1 1 1 1 1 1 1 1 1 1
3164981621357613657600
460800
9 4 2 2 1 1 1 1 1 1 1 1 1 1
3956227026697017072000
491520
7 4 3 2 1 1 1 1 1 1 1 1 1 1
4747472432036420486400
497664
8 5 2 2 1 1 1 1 1 1 1 1 1 1
5934340540045525608000
516096
6 5 3 2 1 1 1 1 1 1 1 1 1 1
7912454053394034144000
552960
8 4 3 2 1 1 1 1 1 1 1 1 1 1
11868681080091051216000
589824
7 5 3 2 1 1 1 1 1 1 1 1 1 1
15824908106788068288000
614400
9 4 3 2 1 1 1 1 1 1 1 1 1 1
17407398917466875116800
622080
8 4 2 2 2 1 1 1 1 1 1 1 1 1
18594267025475980238400
645120
6 4 2 2 1 1 1 1 1 1 1 1 1 1 1
23737362160182102432000
663552
8 5 3 2 1 1 1 1 1 1 1 1 1 1
30990445042459967064000
688128
6 3 3 2 1 1 1 1 1 1 1 1 1 1 1
34814797834933750233600
691200
9 4 2 2 2 1 1 1 1 1 1 1 1 1
37188534050951960476800
737280
7 4 2 2 1 1 1 1 1 1 1 1 1 1 1
52222196752400625350400
746496
8 5 2 2 2 1 1 1 1 1 1 1 1 1
55782801076427940715200
774144
6 5 2 2 1 1 1 1 1 1 1 1 1 1 1
61980890084919934128000
786432
7 3 3 2 1 1 1 1 1 1 1 1 1 1 1
74377068101903920953600
829440
8 4 2 2 1 1 1 1 1 1 1 1 1 1 1
92971335127379901192000
860160
6 4 3 2 1 1 1 1 1 1 1 1 1 1 1
111565602152855881430400
884736
7 5 2 2 1 1 1 1 1 1 1 1 1 1 1
148754136203807841907200
921600
9 4 2 2 1 1 1 1 1 1 1 1 1 1 1
185942670254759802384000
983040
7 4 3 2 1 1 1 1 1 1 1 1 1 1 1
223131204305711762860800
995328
8 5 2 2 1 1 1 1 1 1 1 1 1 1 1
278914005382139703576000
1032192
6 5 3 2 1 1 1 1 1 1 1 1 1 1 1
371885340509519604768000
1105920
8 4 3 2 1 1 1 1 1 1 1 1 1 1 1
557828010764279407152000
1179648
7 5 3 2 1 1 1 1 1 1 1 1 1 1 1
743770681019039209536000
1228800
9 4 3 2 1 1 1 1 1 1 1 1 1 1 1
818147749120943130489600
1244160
8 4 2 2 2 1 1 1 1 1 1 1 1 1 1
985496152350226952635200
1290240
6 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1
1115656021528558814304000
1327104
8 5 3 2 1 1 1 1 1 1 1 1 1 1 1
We can see that the distribution of the prime factors powers follows approximately a shape of 1 ⁄ ln(x), letting this hypothesis open. Besides, we can once more observe that the number of terms of H is almost the same for each number size.