[45] | 1 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
[227] | 2 | \subsubsection{\inria/CAIRN} |
---|
[45] | 3 | |
---|
[227] | 4 | INRIA, the French national institute for research in computer science |
---|
[120] | 5 | and control, operating under the dual authority of the Ministry of |
---|
| 6 | Research and the Ministry of Industry, is dedicated to fundamental and |
---|
| 7 | applied research in information and communication science and |
---|
| 8 | technology (ICST). The Institute also plays a major role in technology |
---|
| 9 | transfer by fostering training through research, diffusion of |
---|
| 10 | scientific and technical information, development, as well as |
---|
| 11 | providing expert advice and participating in international programs. |
---|
[140] | 12 | \parlf |
---|
[120] | 13 | By playing a leading role in the scientific community in the field and |
---|
| 14 | being in close contact with industry, INRIA is a major participant in |
---|
| 15 | the development of ICST in France. Throughout its eight research |
---|
| 16 | centres in Rocquencourt, Rennes, Sophia Antipolis, Grenoble, Nancy, |
---|
| 17 | Bordeaux, Lille and Saclay, INRIA has a workforce of 3 800, 2 800 of |
---|
| 18 | whom are scientists from INRIA and INRIA's partner organizations such |
---|
| 19 | as CNRS (the French National Center for Scientific Research), |
---|
| 20 | universities and leading engineering schools. They work in 168 joint |
---|
| 21 | research project-teams. Many INRIA researchers are also professors and |
---|
| 22 | approximately 1 000 doctoral students work on theses as part of INRIA |
---|
| 23 | research project-teams. |
---|
[227] | 24 | %\parlf |
---|
| 25 | %INRIA develops many partnerships with industry and fosters technology |
---|
| 26 | %transfer and company foundation in the field of ICST - some ninety |
---|
| 27 | %companies have been founded with the support of INRIA-Transfert, a |
---|
| 28 | %subsidiary of INRIA, specialized in guiding, evaluating, qualifying, |
---|
| 29 | %and financing innovative high-tech IT start-up companies. INRIA is |
---|
| 30 | %involved in standardization committees such as the IETF, ISO and the |
---|
| 31 | %W3C of which INRIA was the European host from 1995 to 2002. |
---|
| 32 | %\parlf |
---|
| 33 | %INRIA maintains important international relations and exchanges. In |
---|
| 34 | %Europe, INRIA is a member of ERCIM which brings together research |
---|
| 35 | %institutes from 19 European countries. INRIA is a partner in about 120 |
---|
| 36 | %FP6 actions and 40 FP7 actions, mainly in the ICST field. INRIA also |
---|
| 37 | %collaborates with numerous scientific and academic institutions abroad |
---|
| 38 | %(joint laboratories such as LIAMA, associated research teams, training |
---|
| 39 | %and internship programs). |
---|
[155] | 40 | |
---|
| 41 | The CAIRN group of INRIA Rennes -- Bretagne Atlantique study reconfigurable |
---|
[140] | 42 | system-on-chip, i.e. hardware systems whose configuration may change before or even during |
---|
| 43 | execution. To this end, CAIRN has 13 permanent researchers and a variable number of PhD |
---|
| 44 | students, post-docs and engineers. |
---|
[120] | 45 | CAIRN intends to approach reconfigurable architectures from three |
---|
| 46 | angles: the invention of new reconfigurable platforms, the development |
---|
| 47 | of associated transformation, compilation and synthesis tools, and the |
---|
| 48 | exploration of the interaction between algorithms and architectures. |
---|
| 49 | CAIRN is a joint team with CNRS, INSA of Rennes, University of Rennes 1 and ENS Cachan. |
---|
[155] | 50 | |
---|
[167] | 51 | \subsubsection{\lip/Compsys} |
---|
[155] | 52 | The Compsys group of Ecole Normale Sup\'erieure de Lyon is a project-team |
---|
[61] | 53 | of INRIA Rh\^one-Alpes and a part of Laboratoire de l'Informatique du |
---|
[92] | 54 | Parall\'elisme (LIP), UMR 5668 of CNRS. It has four permanent researchers |
---|
[61] | 55 | and a variable number of PhD students and post-docs. Its field of |
---|
| 56 | expertise is compilation for embedded system, optimizing compilers |
---|
[155] | 57 | and automatic parallelization. Its members were among the initiators |
---|
| 58 | of the polyhedral model for automatic parallelization and program |
---|
| 59 | optimization generally. It has authored or contributed to |
---|
[61] | 60 | several well known libraries for linear programming, polyhedra manipulation |
---|
| 61 | and optimization in general. It has strong industrial cooperations, notably |
---|
[140] | 62 | with ST Microelectronics and \thales. |
---|
[45] | 63 | |
---|
[61] | 64 | |
---|
[45] | 65 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 66 | \subsubsection{\tima} |
---|
[82] | 67 | The TIMA laboratory ("Techniques of Informatics and Microelectronics |
---|
| 68 | for integrated systems Architecture") is a public research laboratory |
---|
| 69 | sponsored by Centre National de la Recherche Scientifique (CNRS, UMR5159), |
---|
[196] | 70 | Grenoble Institute of Technology (Grenoble-INP) and Universit\'{e} Joseph Fourier |
---|
[82] | 71 | (UJF). |
---|
| 72 | The research topics cover the specification, design, verification, test, |
---|
| 73 | CAD tools and design methods for integrated systems, from analog and |
---|
| 74 | digital components on one end of the spectrum, to multiprocessor |
---|
| 75 | Systems-on-Chip together with their basic operating system on the other end. |
---|
[140] | 76 | \parlf |
---|
[119] | 77 | Currently, the lab employs 124 persons among which 60 PhD candidates, and runs |
---|
[82] | 78 | 32 ongoing French/European funded projects. |
---|
[119] | 79 | Since its creation in 1984, TIMA funded 7 startups, patented 36 inventions |
---|
[82] | 80 | and had 243 PhD thesis defended. |
---|
[140] | 81 | \parlf |
---|
[82] | 82 | The System Level Synthesis Group (25 people including PhDs) is |
---|
| 83 | involved in several FP6, FP7, CATRENE and ANR projects. |
---|
| 84 | Its field of expertise is in CAD and architecture for Multiprocessor |
---|
| 85 | SoC and Hardware/Software interface. |
---|
| 86 | |
---|
[45] | 87 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 88 | \subsubsection{\ubs} |
---|
| 89 | |
---|
[64] | 90 | The Lab-STICC (Laboratoire des Sciences et Techniques de l'Information, |
---|
| 91 | de la Communication, et de la Connaissance), is a French CNRS laboratory |
---|
[119] | 92 | (UMR 3192) that groups 4 research centers in the west and south |
---|
| 93 | Brittany: the Universit\'e de Bretagne-Sud (UBS), the Universit\'e de |
---|
[64] | 94 | Bretagne Occidentale (UBO), and Telecom Bretagne (ENSTB). |
---|
| 95 | The Lab-STICC is composed of three departments: Microwave and equipments (MOM), |
---|
| 96 | Digital communications, Architectures and circuits (CACS) and Knowledge, |
---|
| 97 | information and decision (CID). The Lab-STICC represents a staff of 279 |
---|
[119] | 98 | peoples, including 115 researchers and 113 PhD students. |
---|
[64] | 99 | The scientific production during the last 4 years represents 20 |
---|
| 100 | books, 200 journal publications, 500 conference publications, 22 |
---|
| 101 | patents, 69 PhDs diploma. |
---|
[140] | 102 | \parlf |
---|
[64] | 103 | The UBS/Lab-STICC laboratory is involved in several national research |
---|
| 104 | projects (e.g. RNTL : SystemC'Mantic, EPICURE - RNRT : MILPAT, ALIPTA, |
---|
| 105 | A3S - ANR : MoPCoM, SoCLib, Famous, RaaR, AFANA, Open-PEOPLE, ICTER ...), |
---|
| 106 | CMCU project (COSIP) and regional projects (e.g. ITR projects PALMYRE |
---|
| 107 | ...). It is also involved in European Project (e.g. ITEA/SPICES, |
---|
| 108 | IST/AETHER ...). These projects are conducted through tight cooperation |
---|
| 109 | with national and international companies and organizations (e.g. France |
---|
[123] | 110 | Telecom CNET, MATRA, CEA, ASTRIUM, \thales Com., \thales Avionics, AIRBUS, |
---|
[64] | 111 | BarCo, STMicroelectronics, Alcatel-Lucent ...). Results of those or former |
---|
| 112 | projects are for example the high-level synthesis tool GAUT, the UHLS |
---|
| 113 | syntax and semantics-oriented editor, the DSP power estimation tool |
---|
| 114 | Soft-explorer or the co-design framework Design Trotter. |
---|
[140] | 115 | \parlf |
---|
[64] | 116 | The CACS department of the Lab-STICC (also referred as UBS/Lab-STICC), |
---|
| 117 | located in Lorient, is involved in COACH. |
---|
| 118 | The UBS/Lab-STICC is working on the design of complex electronic systems |
---|
| 119 | and circuits, especially but not exclusively focussing on real-time |
---|
| 120 | embedded systems, power and energy consumption optimization, high-level |
---|
| 121 | synthesis and IP design, digital communications, hardware/software |
---|
| 122 | co-design and ESL methodologies. The application targeted by the |
---|
| 123 | UBS/Lab-STICC are mainly from telecommunication and multimedia domains |
---|
| 124 | which enclose signal, image, video, vision, and communication processing. |
---|
| 125 | |
---|
[45] | 126 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 127 | \subsubsection{\upmc} |
---|
[99] | 128 | |
---|
[140] | 129 | University Pierre et Marie Curie (UPMC) is the largest university in France (7400 |
---|
| 130 | employees,38000 students). |
---|
| 131 | The Laboratoire d'Informatique de Paris 6 (LIP6) is the computer science laboratory of |
---|
| 132 | UPMC, hosting more than 400 researchers, under the umbrella of the CNRS (Centre National |
---|
| 133 | de la Recherche Scientifique). |
---|
| 134 | The \og System on Chip \fg Department of LIP6 consists of 80 people, including 40 PHD |
---|
| 135 | students. |
---|
[132] | 136 | The research focuses on CAD tools and methods for VLSI and System on Chip design. |
---|
[140] | 137 | \\ |
---|
[62] | 138 | The annual budget is about 3 M{\texteuro}, and 1.5 M{\texteuro} are from research contracts. |
---|
[140] | 139 | The SoC department has been involved in several european projects :IDPS, EVEREST, OMI-HIC, |
---|
| 140 | OMI-MACRAME, OMI-ARCHES, EUROPRO, COSY, Medea SMT, Medea MESA, Medea+ BDREAMS, Medea+ |
---|
| 141 | TSAR. |
---|
[99] | 142 | \parlf |
---|
[140] | 143 | The public domain VLSI CAD system ALLIANCE, developped at UPMC is installed in more than |
---|
| 144 | 200 universities worldwide. |
---|
| 145 | The LIP6 is in charge of the technical coordination of the SoCLib national project, and is |
---|
| 146 | hosting the SoCLib WEB server. |
---|
| 147 | The SoCLib DSX component was designed and developped in our laboratory. |
---|
| 148 | It allows design space exploration and will the base of the $CSG$ COACH tools. |
---|
| 149 | Moreover, the LIP6 developped during the last 10 years the UGH tool for high level |
---|
| 150 | synthesis of control-dominated coprocessors. |
---|
[134] | 151 | This tool will be modified to be integrated in the COACH design flow. |
---|
[99] | 152 | \parlf |
---|
[140] | 153 | Even if the preferred dissemination policy for the COACH design flow will be the free |
---|
| 154 | software policy, (following the SoCLib model), the SoC department is ready to support |
---|
| 155 | start-ups : Six startup companies (including \zied) have been created by former |
---|
| 156 | researchers from the SoC department of LIP6 between 1997 and 2002. |
---|
[45] | 157 | |
---|
| 158 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 159 | \subsubsection{\xilinx} |
---|
| 160 | |
---|
[99] | 161 | \xilinx is the world leader in the domain of programmable logic circuits (FPGA). |
---|
[119] | 162 | \xilinx develops on one hand several FPGA architectures (CoolRunner, Spartan and Virtex |
---|
[132] | 163 | families) and on the other hand a software solution allowing exploiting the |
---|
[99] | 164 | characteristics of these FPGA. |
---|
| 165 | \parlf |
---|
[119] | 166 | The tools proposed allow the designer to describe his architecture from a modeling |
---|
[99] | 167 | language (VHDL/Verilog) to an optimized architecture implemented to the selected |
---|
| 168 | technology. |
---|
| 169 | The team located at Grenoble is responsible of the logic synthesis tool development (XST) |
---|
| 170 | of the software solution, which aggregates all the steps allowing proceeding from a HDL |
---|
| 171 | model to a technological netlist: |
---|
| 172 | \begin{itemize} |
---|
| 173 | \item Compilation of HDL code and model generation at Register Transfer Level (RTL). |
---|
| 174 | \item RTL model optimizations. |
---|
| 175 | \item Inference and generation of optimized macro blocks (Finite states machine, counter). |
---|
[119] | 176 | \item Boolean equations generation for random logic. |
---|
[99] | 177 | \item Logical, mapping and timing optimizations. |
---|
| 178 | \end{itemize} |
---|
| 179 | \parlf |
---|
| 180 | The architectures developed by \xilinx offer a collection of technological primitives |
---|
| 181 | (variable complexity) from simple Boolean generators (LUT) to complex DSP blocks or memory |
---|
[119] | 182 | and even configurable processor cores (Pico and MicroBlaze families). |
---|
| 183 | This kind of architecture allows, therefore, the designer to validate different |
---|
[99] | 184 | hardware/software possibilities in a High Level Synthesis (HLS) framework. |
---|
| 185 | \parlf |
---|
| 186 | The classical optimization techniques focus, mainly, on the frequency aspects and on |
---|
| 187 | available resources use. |
---|
| 188 | The optimizations, taking into account the consumption criteria, become critical due to |
---|
| 189 | the fact of the increase of the architecture complexity and due to the use of FPGA |
---|
| 190 | component for low power applications. |
---|
| 191 | |
---|
[45] | 192 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 193 | \subsubsection{\bull} |
---|
| 194 | |
---|
[99] | 195 | \bull designs and develops servers and software for an open environment, integrating the |
---|
| 196 | most advanced technologies. It brings to its customers its expertise and know-how to help |
---|
| 197 | them in the transformation of their information systems and to optimize their IT |
---|
| 198 | infrastructure and their applications. |
---|
| 199 | \parlf |
---|
| 200 | \bull is particularly present in the public sector, banking, finance, telecommunication |
---|
| 201 | and industry sectors. Capitalizing on its wide experience, the Group has a thorough |
---|
| 202 | understanding of the business and specific processes of these sectors, thus enabling it to |
---|
| 203 | efficiently advise and to accompany its customers. Its distribution network spreads to |
---|
| 204 | over 100 countries worldwide. |
---|
| 205 | \parlf |
---|
| 206 | The team participating to the COACH project is from the Server Development Department |
---|
| 207 | based in Les Clayes-sous-Bois, France. The SD Department is in charge of developing |
---|
| 208 | hardware for open servers (e.g. NovaScale) and HPC solutions. Its main activities range |
---|
| 209 | from architecture specification, ASIC design/verification/prototyping to board design and |
---|
| 210 | include also specific EDA development to complement standard tools. |
---|
| 211 | |
---|
[45] | 212 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 213 | \subsubsection{\thales} |
---|
| 214 | |
---|
[123] | 215 | \thales is a world leader for mission critical information systems, with activities in 3 |
---|
| 216 | core businesses: aerospace (with all major aircraft manufacturers as customers), defence, |
---|
| 217 | and security (including ground transportation solutions). It employs 68000 people |
---|
[140] | 218 | worldwide, and is present in 50 countries. \thales Research \& Technology operates at the |
---|
| 219 | corporate level as the technical community network architect, in charge of developing |
---|
| 220 | upstream and \thales-wide R \& T activities, with vision and visibility. In support of |
---|
| 221 | \thales applications, TRT's mission is also to anticipate and speed up technology transfer |
---|
| 222 | from research to development in Divisions by developing collaborations in R\&T. \thales is |
---|
| 223 | international, but Europe-centered. Research \& Development activities are disseminated, |
---|
| 224 | and corporate Research and Technology is concentrated in Centres in France, the United |
---|
| 225 | Kingdom and the Netherlands. A key mission of our R\&T centres is to have a bi-directional |
---|
[142] | 226 | transfer, or "impedance matching" function between the scientific research network and the |
---|
| 227 | corresponding businesses. The TRT's Information Science and Technology Group is able to |
---|
[140] | 228 | develop innovative solutions along the information chain exploiting sensors data, through |
---|
| 229 | expertise in: computational architectures in embedded systems, typically suitable for |
---|
| 230 | autonomous system environments, mathematics and technologies for decision involving |
---|
| 231 | information fusion and cognitive processing, and cooperative technologies including man |
---|
| 232 | system interaction. |
---|
| 233 | \parlf |
---|
[123] | 234 | The Embedded System Laboratory (ESL) of TRT involved in the COACH project is part of the |
---|
[140] | 235 | Information Science and Technology Group. Like other labs of TRT, ESL is in charge of |
---|
| 236 | making the link between the needs from \thales business units and the emerging |
---|
| 237 | technologies, in particular through assessment and de-risking studies. It has a long |
---|
| 238 | experience on parallel architectures design, in particular on SIMD architectures used for |
---|
| 239 | image processing and signal processing applications and on reconfigurable architectures. |
---|
[123] | 240 | ESL is also strongly involved in studies on programming tools for these types of |
---|
[140] | 241 | architectures and has developed the SpearDE tool used in this project. The laboratory had |
---|
| 242 | coordinated the FP6 IST MORPHEUS project on reconfigurable technology, being highly |
---|
| 243 | involved in the associated programming toolset. The team is also involved in the FP6 IST |
---|
| 244 | FET AETHER project on self-adaptability technologies and coordinates national projects on |
---|
| 245 | MPSoC architecture and tools like the Ter\verb+@+ops project (P\^{o}le de |
---|
| 246 | Comp\'{e}titivit\'{e} System\verb+@+tic) dedicated to the design of a MPSoC for intensive |
---|
[123] | 247 | computing embedded systems. |
---|
| 248 | |
---|
[45] | 249 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 250 | \subsubsection{\zied} |
---|
| 251 | |
---|
[123] | 252 | \zied is an innovative start-up specialized in the conception of configurable circuits |
---|
| 253 | and the development of CAD tools. \zied provides a complete front-to-back-end generator |
---|
| 254 | of "hardware" reprogrammable IP cores that can be embedded in ASIC and ASSP SoC designs. |
---|
| 255 | \zied solution is based on a patented FPGA architecture delivering an unprecedented |
---|
| 256 | level of logic density. This high capacity is accessible using a traditional RTL flow from |
---|
| 257 | Verilog/VHDL synthesis all the way to bitstream generation. |
---|
[140] | 258 | \parlf |
---|
[123] | 259 | \zied is a spin-off from LIP6 (Laboratoire Informatique Paris 6) and was awarded at the |
---|
| 260 | French National Competition for Business Startup and Innovative Technology in 2007 and |
---|
[192] | 261 | 2009 in "emergence" and "creation" categories respectively. |
---|
[123] | 262 | |
---|
[45] | 263 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
| 264 | \subsubsection{\navtel} |
---|
| 265 | |
---|
[99] | 266 | \navtel was created in 1994 to develop flexible systems based on FPGAs and currently |
---|
| 267 | focuses on intelligent signal mining for knowlege based signal processing systems. |
---|
| 268 | The company main activity covers the following domains: satellite communication, |
---|
| 269 | aeronautics, imaging and security. |
---|
| 270 | \navtel dedicates about 70\% of its activity to client projects in satellite, aeronautical |
---|
| 271 | and imaging systems and 30\% to its own research programmes in collaboration with French |
---|
| 272 | and international partners. |
---|
| 273 | \parlf |
---|
| 274 | The multi disciplinary technical team comprises 6 engineers for signal processing and |
---|
| 275 | hardware development and one technician. |
---|
| 276 | \parlf |
---|
| 277 | \navtel has its own Ph.D program which includes in the past (classification technology |
---|
| 278 | and MIMO for FPGA implementation) and currently the preparation of a project for remote |
---|
| 279 | sensing with signal intelligence for satellite application. The company participates in |
---|
| 280 | national and European level projects contributing to a strategic alliance between academic |
---|
| 281 | and industrial partners.\\ |
---|
| 282 | The current research covers particle filter applications for communication and RADAR, |
---|
| 283 | Cognitive Radio, Satellite communication, embedded super computing and focuses on low |
---|
| 284 | power algorithms for implementation in FPGA and soft computing. |
---|
| 285 | \parlf |
---|
| 286 | For manufacturing and industrialization, \navtel works with ISO certified partners. |
---|
[137] | 287 | The company clients include the CNES, Thal\`{e}s Alenia Space, Thal\`{e}s Communication, EADS, |
---|
[132] | 288 | Eutelsat, AIRBUS, Schlumberger. \navtel participates from the R\&D phase up to the |
---|
[99] | 289 | system delivery. |
---|
| 290 | \begin{description} |
---|
| 291 | \item[Recognitions:]\mbox{} |
---|
| 292 | \begin{itemize} |
---|
| 293 | \item EC Challenge+ programme for innovative projects (promotion 9) |
---|
| 294 | \item Innovation and technology development \og Troph\'{e}es R\'{e}gion Centre \fg |
---|
| 295 | \item Recognition by the French Senate for company creation during the |
---|
| 296 | \og Semaine de l'entrepreneur \fg 2005. |
---|
| 297 | \end{itemize} |
---|
| 298 | \end{description} |
---|